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ABSTRACT

Estimating the variability of snow depth in remote areas poses significant challenges due to limited spatial
and temporal data availability. This study uses snow depth measurements from the ICESat-2 satellite laser
altimeter, which are sparse in both space and time, and incorporates them with climate reanalysis data
into a downscaling-calibration scheme to produce monthly gridded snow depth maps at microscale (10 m).
Snow surface elevation measurements from ICESat-2 along profiles are compared to a digital elevation model
to determine snow depth at each point. To efficiently turn sparse measurements into snow depth maps, a
regression model is fitted to establish a relationship between the retrieved snow depth and the corresponding
ERAS Land snow depth. This relationship, referred to as subgrid variability, is then applied to downscale
the monthly ERA5 Land snow depth data. The method can provide timeseries of monthly snow depth maps
for the entire ERA5 time range (since 1950). We observe that the generic output should be calibrated by
a small number of localized control points from a one-time field survey to reproduce the full snow depth
patterns. Results show that snow depth prediction achieved a R2 model fit value of 0.81 (post-calibration) at an
intermediate scale (100 m x 500 m) using datasets from airborne laser scanning (ALS) in the Hardangervidda
region of southern Norway, with still good results at microscale (R2 0.34, RMSE 1.28 m, post-calibration).
Bias is greatest for extremes, with very high/low snow depths being under- and overestimated, respectively.
Modeled snow depth time series at the site level have a slightly smaller RMSE than ERAS5 Land data, but
are still consistently biased compared to measurements from meteorological stations. Despite such localized
bias and a tendency towards average snow depths the model reproduces the relative snow distribution pattern
very accurately, both for peak snow (Spearman’s p 0.77) and patchy snow meltout in late spring (Matthews
correlation coefficient 0.35). The method relies on globally available data and is applicable to other snow
regions above the treeline. Though requiring area-specific calibration, our approach has the potential to provide
snow depth maps in areas where no such data exist and can be used to extrapolate existing snow surveys in
time and over larger areas. With this, it can offer valuable input data for hydrological, ecological or permafrost
modeling tasks.

1. Introduction

it very challenging to measure snow thickness or mass from space
at a large scale and with high repeatability. The complex processes

In a warming world, understanding the spatio-temporal variations
of seasonal snow is increasingly vital for climate impact assessments,
meltwater supply (Immerzeel et al., 2020; Livneh and Badger, 2020),
permafrost modeling (Gisnés et al., 2016) and ecological responses
(Callaghan et al., 2011). Seasonal snow accumulates and melts away
once a year in a number of climatic zones from, for instance, the
forested regions of the taiga (largest terrestrial ecosystem), the open
tundra of the Arctic and many high mountain ranges throughout the
world (Sturm and Liston, 2021). Being white, snow is easily observable
from space. However, its thin nature (typically less than 2 m) makes
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driving snow metamorphism and precipitation estimation are hurdles
too to rely on models for assessing seasonal snow dynamics. Observing
and modeling seasonal snow at a large scale therefore remains a
challenge (Tsang et al., 2022; Mudryk et al., 2020). This is exacerbated
in remote and complex terrain with limited data availability (Bormann
et al., 2018).

A major persistent gap is observing or estimating snow depth and
water equivalent over mountain regions. In-situ point-based snow sta-
tions are generally located in gentle terrain at lower or mid-elevation,
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often under-representing rugged and higher elevation (Fassnacht et al.,
2018). Employing sensors on airplanes or UAVs (unmanned aircraft
vehicles) offers very high-resolution data (Biihler et al., 2016), but are
costly, of limited spatial extent and potentially with legal flight restric-
tions. However this can be an effective approach for watershed-scale
snow depth mapping (Deems et al., 2013).

Otherwise, space-borne technologies can cover systematically large
to global extents at regular intervals. Two main technologies exist
to retrieve snow depth: radar and laser altimetry. Radar has sev-
eral issues with footprint size, penetration depth, snow wetness, and
modeling effects due to scattering (Dietz et al., 2012). For instance,
passive microwave radar with a footprint size of up to 25 km is
insufficient to capture the heterogeneous snow depth in mountainous
terrain Tsang et al. (2022), Mudryk et al. (2020). Despite recent tech-
nology development in C-band radar enabling snow depth retrieval at
resolutions ranging from 500 meters to 1 kilometer under dry snow
conditions (Lievens et al., 2019, 2022), finer-scale snow depth remains
poorly addressed (e.g. 100 m resolution, Griinewald et al. 2010, Mott
et al. 2018). Another approach for high-resolution snow depth retrieval
is to use laser scanning or photogrammetry. Both methods provide
snow depth by collecting surface height data pre- and post-snowfall,
enabling snow depth mapping by differencing elevations. Recently,
there has been a significant effort to retrieve snow depth by combining
snow-free digital elevation models (DEMs) with space-borne lidar mea-
surements of the snow surface from ICESat Treichler and Kaab (2017)
and its successor ICESat-2 (Neuenschwander and Pitts, 2019). This
cutting-edge satellite offers high-resolution, accurate lidar elevation
profile measurements of the Earth’s surface, including snow-covered
terrains.

Deschamps-Berger et al. (2023) derived snow depth from the ICESat-
2 ATLO6 products and reported an accuracy of 0.2 m (bias) and a
precision (normalized median absolute deviation; NMAD) of 0.5 m
for low slopes and 1.2 m for steeper areas over the upper Tuolumne
basin, California, USA. Enderlin et al. (2022) found that snow depth
estimates based on ICESat-2 data had a median absolute deviation
(MAD) ranging from 0.2 m for slopes < 5° to over 1 m for slopes >
20°. Besso et al. (2024) questioned the varying accuracy of the ICESat-
2 ATLO8 product and developed a self-defined processed elevation
product, which achieved a MAD of 0.14 m to 0.20 m and root mean
square error (RMSE) of 0.18 m to 0.33 m for the Tuolumne Basin
and Methow Valley, USA. These studies have uncovered ICESat-2 as
an emerging and cost-efficient data source for snow depth and also
brought attention to challenges associated with the data and elevation
differencing workflow, primarily stemming from discrepancies and
spatially/temporally varying inconsistencies between reference DEMs
and ICESat-2. Therefore, implementing and improving this workflow
requires careful co-registration and bias correction on DEMs & ICESat-
2. Additionally, the sparse nature of ICESat-2 measurements presents
another significant challenge to deriving comprehensive snow-depth
maps: how can we extrapolate both spatially and temporally to areas
outside of the ICESat-2 measurement profiles?

Another approach to understanding snow dynamics is through
snow modeling. Researchers primarily use two modeling strategies to
study these dynamics, namely process-based and statistical approaches.
Process-based models (Lehning et al., 2006; Liston and Elder, 2006;
Kim et al., 2021) incorporated physical processes, which are driven
by meteorological forcing data and yield gridded snow depth prod-
ucts. Mazzolini et al. (2024) combined snow depth transects from
the high-resolution ICESat-2 ATLO3 product with snow modeling in a
data assimilation framework. They spatially propagated sparse ICESat-
2 snow profile information using an abstract distance measured in a
feature space defined by topographical parameters and snow melt-out
climatology. For the 1 km? Izas catchment in the Spanish Pyrenees,
they show that adding snow depth information in addition to the tra-
ditionally used fractional snow-covered area observations improves the
model skill score by 22%. However, these models are computationally
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costly and thus often struggle to cover large areas or provide fine
resolution. Models are hindered by complex near-surface atmospheric
processes and limited data on precipitation and wind fields (Freudiger
et al., 2017), leading to a new question: how to quantify the subgrid
variability of snow depth (Clark et al., 2011)? The distribution patterns
of snow exhibit a notable resemblance year after year due to their de-
pendence on topography, vegetation, and consistent synoptic weather
patterns (Sturm and Wagner, 2010; Parr et al., 2020). The consistent
recurrence of this pattern supports the use of computationally efficient
statistical approaches. Many studies seek to establish parameterizations
for subgrid variability, such as snow depletion curves, snow depth
elevation gradients, snow probability distribution (Mendoza et al.,
2020b), subgrid snow depth coefficient of variation (Liston, 2004; He
et al., 2019; Gisnas et al., 2016) or topographic correlations (Helbig and
van Herwijnen, 2017; Mazzolini et al., 2024). Learning and reproducing
a snow depth map at fine scales typically involves pattern recogni-
tion. Multiple-linear regression (Griinewald et al., 2013; Dvornikov
et al., 2015), binary regression trees (Revuelto et al., 2014), random
forests (Revuelto et al., 2020) or a convolutional neural network (Daudt
et al.,, 2023) have been used to predict snow distribution patterns
with varied performance (R2 of 0.25-0.91). However, these statistical
models typically require substantial training data from terrestrial or
airborne sensors. Therefore, most models can hardly be transferred to
other catchments or seasons (Griinewald et al., 2013; Revuelto et al.,
2020). Another category of statistical models capable of generalizing
subgrid variability is commonly known as downscaling models. These
models are designed to refine data from coarse, broad-scale grids to
localized subgrid levels (Maraun, 2019). When applying these models
retrospectively or into the future, an important assumption is made: the
statistical relationships remain constant over time, a condition known
as stationarity. Currently, there is a limited number of statistical down-
scaling models applied to snow depth (Helbig et al., 2024; Tryhorn and
DeGaetano, 2013). The primary obstacles involve obtaining sufficient
snow depth measurements for training and testing, meteorological
forcing data in high resolution and accurately recognizing variability
through informative features.

In light of these advancements and challenges, we present a method
using ICESat-2 data in conjunction with high-resolution DEMs and
ERA5-land climate reanalysis data, to effectively generate compre-
hensive snow depth maps at the hillslope scale. The objectives and
workflow of this study are as follows:

1. Retrieving snow depth from ICESat-2 laser altimetry data across
Norway.

2. Using this data to train a machine learning-based downscaling
model that accommodates spatial and temporal variations of
snow depth in mountain environments.

3. Applying local scaling calibration to downscaled snow depth for
a validation area, and validating output snow depth maps at
different scales with in-situ observations, gridded snow model
products, and meteorological stations.

4. Discussing the challenges encountered in snow depth retrieval
and snow depth downscaling.

The study area of Norway/Hardangervidda mountain plateau is
chosen based on the availability of validation data. Still, the workflow is
designed to be globally applicable where an accurate DEM and a proper
calibration dataset are available. To retrieve snow depth measurements
from ICESat-2 data, we used nationally and globally available DEMs
acquired during snow-free conditions. Subsequently, we statistically
downscaled ERA5 Land from its ~9 km native resolution into 10 m
using ICESat-2 snow depth measurements and a machine learning
algorithm. To our knowledge, this study marks the first attempt to use
ICESat-2 data to downscale ERAS5 Land data, and the first attempt to
propagate ICESat-2 snow depths in time and space using a statistical
approach.
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Fig. 1. Map of the study area, Hardangervidda mountain plateau. A photo of the typical summer landscape is displayed at the top (a, looking south towards the Finse area and
Hardangervidda. Photographer: Simon Filhol). The main panel (b) shows ICESat-2 tracks, validation data from the 2008/2009 snow survey and available weather stations. ICESat-2
ATLO8 snow-on data from October 2018 to October 2022 are displayed in red. The majority of tracks was surveyed only once and the few repeated tracks appear darker due to
higher density. The blue ticks at the bottom highlight the ground tracks acquired during April (peak snow). The right panel shows the location of the validation area and the total

number of available snow-on data segments for mainland Norway (c).

2. Study area and data setting

Norway, located on the western side of the Scandinavian Peninsula
in northwestern Europe, spans latitudes from 57° 58'N to 71° 11’ N
and longitudes from 4° 40’ E to 30° 58’ E. The country features a
diverse topography, ranging from lowland valleys to high mountains
(highest peak at 2469 m a.s.l.). In winter, westerly winds bring mois-
ture, resulting in substantial snowfall from the coast to inland areas.
This snow acts as a crucial reservoir for hydropower, emphasizing the
importance of estimating snow mass in mountain environments.

Hardangervidda, our validation area, is the largest mountain plateau
in northern Europe, approximately 6500 km?. Its comparably flat ter-
rain is nevertheless covered by hills and troughs exposed to high winds
and heavy snowfall (Fig. 1). The plateau predominantly lies above 1000
meters above sea level (m a.s.l.), featuring a low alpine ecosystem with
grass heaths, dwarf shrubs, and higher areas with bare rock or lichen
marsh tundra. The eastern region is characterized by its open terrain
with numerous lakes and streams. The western and southern areas,
reach up to 1700 m a.s.l. and act as significant orographic barriers
to the prevailing westerly wind flow. As moist air masses encounter
this mountain range, they are lifted and cooled, leading to increased

precipitation on the windward slopes and a subsequent decrease of
precipitation on the leeward side. Snow accumulation typically begins
in mid to late September at higher elevations, peaking around late
April. Mean annual precipitation ranges from 750 mm to as much as
3000 mm over relatively short distances, with approximately 50%-60%
of this annual precipitation falling as snow (Ketzler et al., 2021).

2.1. ICESat-2 ATLOS8 elevation data

Launched in September 2018, ICESat-2 is equipped with the Ad-
vanced Topographic Laser Altimeter System (ATLAS), which provides
photon-counting lidar measurements at a global scale (Neuenschwan-
der and Pitts, 2019). ATLAS comprises three parallel beam pairs sep-
arated by 3.3 km on the ground. Each beam pair includes a strong
and weak beam separated by 90 m. The ATLAS system emits a pulse
every 0.7 m along the track, covering a circular footprint with a
diameter of ~15 m. At mid-latitudes, ICESat-2 ground tracks are gen-
erally not repeated but shifted for each overpass to maximize global
spatial coverage. The ICESat-2 ATLO8 product (level L3 A, version 5,
Neuenschwander et al., 2021) offers elevation data in fixed segment
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sizes of 100 meters along the ground track (Neuenschwander et al.,
2022). For each segment, there are five geolocations (subsegments)
in 20 m intervals. Instead of using the mean elevation of the 100 m
segment (h_te mean, e.g., Enderlin et al., 2022), we used the subsegment
height referring to best-fit terrain elevation at the midpoint location
of the segment (h_te best fit 20m_2). The sub-segment heights are de-
termined through polynomial fitting to terrain photons with slope
correction and weighting (Neuenschwander et al., 2022). Norway has
a total of 3968 ATLO8 data granules available for analysis from 14
October 2018, to 12 October 2022. After removing invalid data, and
excluding permanent ice and inland water, our dataset consists of
13,197,376 segments, including 4,778,904 snow-free segments on land
and 8,418,472 segments with snow cover over land. The coverage of
snow-on segments is displayed in Fig. 1 with blue ticks representing the
ground tracks from April of one of the four years (as ground tracks are
not repeated).

2.2. Snow-off elevation data

As reference ground for snow depth retrieval, we employ the Nor-
wegian DTM1 elevation model (DTM1, Kartverket, 2022), a 1 m lidar-
based product acquired by Kartverket between 2016 and 2022. As a
sensitivity test of DEM resolution, we also utilize the 10-meter resolu-
tion variant from the same data provider, DTM10 (Kartverket, 2022).
To demonstrate the workflow’s applicability in areas without lidar-
based elevation products, we incorporate global DEMs such as Coper-
nicus GLO-30 (European Space Agency, 2021), hereafter referred to
as COP30, and FABDEM (Hawker et al., 2022, Forest And Buildings
Removed Copernicus DEM, hereafter referred to as FAB) as reference
ground. COP30 is a 30-meter-resolution Digital Surface Model (DSM)
acquired between December 2010 and January 2015 through synthetic
aperture radar interferometry (TanDEM-X mission). FAB, a variant of
COP30, eliminates buildings and trees using the random forest algo-
rithm, enhancing accuracy. FAB serves as a reference for comparison
with COP30.

2.3. Large-scale reanalysis data

ERA5 Land hourly data (version 5) (Mufioz Sabater, 2021a) is
an ECMWF (European Centre for Medium-Range Weather Forecasts)
reanalysis product covering the period from 1950 to the present. It
describes water and energy cycles over global land areas with over
50 variables at a spatial resolution of approximately 9 km (Mufoz-
Sabater et al., 2021). This reanalysis data supplies the necessary forcing
data for the downscaling model to generate sub-grid products while
also accounting for input errors in the model (Giinther et al., 2019;
Pflug et al.,, 2021). ERA5 Land’s snow depth data (sde) represents
the instantaneous snow thickness on the ground for the elevation of
each grid cell, excluding snow on vegetation canopy (Mufioz Sabater,
2021a). Additionally, the ERA5 Land monthly (Mufoz Sabater, 2021b)
dataset contributes instantaneous wind fields (u10, v10) at 10 m above
the land surface.

2.4. Validation data

Our validation methods include ALS surveys, seNorge snow model
data, Sentinel-2 satellite imagery, and meteorological station data.
These diverse sources offer both spatial and temporal contexts for
evaluating model performance:

» The ALS survey: The survey by Melvold and Skaugen (2013)
provides 2 m gridded snow depths data for two winters over
Hardangervidda. The survey encompassed six flight lines apart in
10 km intervals, each extending 80 km in an east-west direction
with a crossline scanning width of 500 m (Fig. 1). The data
were collected between 3-21 April 2008, 21-24 April 2009, and
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21 September 2008 (snow-free reference). During the autumn
collection period, the ground was in nearly bare condition except
for few perennial snow patches (Melvold and Skaugen, 2013).
The snow depth maps were regridded (averaged) to 10 m spatial
resolution for this study. Figs. 5 and 6show snow depth data for
April 2008 for parts of flight line b (indicated in Fig. 1).

The seNorge data (www.senorge.no) employs a snow model that
predicts snow depth based on interpolated precipitation and tem-
perature station observations (seNorge2018 v23.09) (Saloranta,
2012, 2016). It offers daily snow depth maps at a 1 km x1 km grid
resolution and is available via the public archive service Thredds'
of the Norwegian Meteorological Institute (MET Norway). We
aggregated the daily snow depth from seNorge into monthly
average values.

Meteorological stations: this study compared the snow depth time
series with three available meteorological stations in the region
(Fig. 1). The weather station Sandhaug is located 50 m north of
one of the ALS flight lines at an elevation of 1250 m above sea
level (a.s.l.). The other station Mogen (954 m a.s.l.) is situated
directly along one of the flight line. Additionally, Haukeliseter
(990 m a.s.l.) is positioned between two flight lines. Monthly
mean snow depth data were retrieved from MET Norway’s Frost
API2. Due to harsh observing conditions in our validation area, all
station observations carry a median confidence level indicated by
a quality flag of 2.

Sentinel-2 satellite imagery (L2 A; Sentinel-2, 2022) was used for
visual data quality checks and validation of the presence/absence
of snow in the Lake Mgsvatn area (Fig. 1).

2.5. Calibration data

For calibration purposes, we identified 7103 points where ICESat-2
tracks overlapped with ALS strips collected in April 2008 (Fig. 1). These
points, distributed across the entire study area, were selected as control
points to represent the study area while the rest of the area remains
unseen to the downscaling model. The outputs from the downscaling
model are then calibrated against these selected control points to ensure
accuracy.

3. Methodology
3.1. ICESat-2 snow depth retrieval

Snow depth (SD;g,) was derived from ICESat-2 high-resolution
elevation measurements through an elevation differencing workflow.
ICESat-2 ATLO8 data were categorized into snow-on (1.S,,,,) and snow-
free segments based on attributes and flags present in the ATLOS8
data: the snow mask (segment_snowcover) from the National Oceanic
and Atmospheric Administration (NOAA) daily snow cover product
(Neuenschwander et al., 2022), as well as the (brightness_flag). Snow-
free segments were used for DEM co-registration and subsequent bias
correction (Fig. 2, see 3.1.1, 3.1.2). The correction involved estimat-
ing the discrepancy ([h) between the reference DEM (DEM,, ) and
ICESat-2 snow-free measurements:

SD;gy =18

snow

—(DEM,,; + 4,)

Moving terrain such as water surfaces and permanent ice were excluded
from the analysis using the segment_landcover reference mask from the
ATLO8 product (based on the Copernicus Global Land Cover dataset at
100-meter spatial resolution, Neuenschwander et al., 2022).

1 MET Norway’s Thredds APIL: https://thredds.met.no. Last access: 11 Sep
2023.

2 Frost API, MET Norway’s archive of historical weather and climate data:
https://frost.met.no. Last access: 11 Sep 2023.
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Fig. 2. Flow chart of the snow depth (SD) retrieval and downscaling-calibration scheme. First, snow depth is extracted by elevation differencing. This step includes co-registration
and bias correction of the DEM (blue box). Consequently, a tree-structure-based regressor for downscaling is trained and implemented to predict local variability of snow depth
in any location and at any time (green box). The resulting snow depth map time series are validated over time and in space (orange box). For full definitions of acronyms, see

Section 3. Satellite graphics source: NASA.gov.

The snow depth retrieved at each point (Easting, Northing, time)
provides spatially and temporally incomplete information on snow
dynamics. To overcome this, we obtained daily maximum snow depth
from ERA5 Land and interpolated linearly in space for each desired
point (E, N, t). The ICESat-2 snow depth is then subtracted from the
interpolated ERA5 Land snow depth to create a localized dependent
variable, denoted as subgrid variability (Y) (Fig. 2). This variable repre-
sents the deviation from the aggregated mean snow depth at each point,
used in the subsequent downscaling model (Section 3.2). The downscal-
ing model predicts this subgrid variability, applying it to the ERA5 Land
monthly snow depth data to generate snow depth time series. Due to
the inherent nature of the downscaling model, raw outputs are biased
towards average values while extreme values are underrepresented (i.e.
conditional bias). Thus, a calibration step (Section 3.2.3) was added
to better represent the full snow depth distribution. Data processing
was done in Python with custom scripts that are available in a public
GitHub repository (see Data availability). The processing relies on the
libraries Xarray (Hoyer and Hamman, 2017) and Pandas (The pandas
development team, 2024). The retrieved snow depth for Norway, span-
ning from October 2018 to October 2022 is available on Zenodo (DOI:
https://doi.org/10.5281/zenodo.10048875).

3.1.1. Co-registration

Co-registration is a crucial step to align elevation datasets, with
ICESat-2 snow-free data serving as a highly precise and spatially con-
sistent reference. We used a computationally efficient gradient descent-
based co-registration algorithm (for details see Supplementary Section
A). The process, facilitated by the open-source xXDEM tool (Xdem con-
tributors, 2021), was applied to each DEM tile, ensuring accurate
alignment across all datasets.

3.1.2. Bias correction

Bias correction estimates vertical discrepancies (th) between DEMs
and ICESat-2 data. Given that DEMs are often patched together from
multiple datasets and various sensors, captured in different seasons and
at different resolutions, they must be cautiously used as a reference
ground surface (Hugonnet et al., 2022). Magruder et al. (2021) used
ICESat-2 elevations to correct DEMs, taking canopy and slope into
account. On the other hand, Tian and Shan (2021) and Enderlin et al.
(2022) found that ICESat-2 ATLO8 data underestimates terrain height
when compared to the reference DEMs over steep terrain, and thus
proposed a slope-dependent bias correction. Our study does not assert
which dataset represents ground truth most accurately but focuses on
quantifying the discrepancies so that we can exclude it from snow depth
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elevation differencing. Essentially, estimating the discrepancies (4),)
between two datasets is a regression problem that can be described with
physiographic parameters, vegetation conditions, and quality metrics
from ICESat-2. We employ the XGBoost® regression model (Chen and
Guestrin, 2016), a gradient-boosted decision tree (GBDT) algorithm.
The regression model trained based on ICESat-2 snow-free measure-
ments, is later used to predict elevation discrepancies (A},) for all
other DEM grid cells where ICESat-2 snow-free data are not avail-
able (Supplementary Section B). This results in bias-corrected snow
depth measurements for all ICESat-2 snow-on data points. The bias
correction successfully removed a significant negative skewness in the
elevation difference histograms for snow-free data points (Figure S.4).
In addition, considerable dependence on first and second-order DEM
derivatives (slope and curvature) was detected and removed. After bias
correction, NMAD values between ICESat-2 snow-free data points and
DEM datasets are reduced from 0.66 m to 0.48 m (DTM1), and from
1.87 m to less than 0.62 m (FAB) (Figure S.4).

3.2. Snow depth downscaling-calibration

A second XGBoost regression model is employed to downscale
ERAS Land snow depths. XGBoost has demonstrated its effectiveness in
downscaling tasks, such as total water storage anomaly from satellite
gravimeter (Ali et al., 2023), precipitation (Zhu et al., 2023) or wind
speed (Hu et al.,, 2023). We train the XGBoost regression model on
(bias-corrected) ICESat-2 snow depth measurements and use a com-
prehensive set of topo-climatic features, including snow depth from
ERAS Land (sde_era), east, north, elevation (h te_best fit), slope, aspect,
topographic position index (TPI, Weiss 2001; see Section 3.2.1), curva-
ture, planform curvature (planc), profile curvature (profc), cumulative
wind-aspect factor (W, s> see Section 3.2.2) and month of the year.
These predictors offer valuable information into the physical driver
of snowpack dynamics. For instance, slope and curvatures are basic
metrics governing snow accumulation (Filhol and Sturm, 2019). We
compute these terrain attributes using xDEM (Xdem contributors, 2021)
based on DTM10 with Zevenbergen & Thorne algorithm (Zevenbergen
and Thorne, 1987) at 10 m resolution, consistent with the model’s
output resolution. The time-varying wind fields are extracted from
ERA5 Land monthly data (see Section 3.2.2). We assume ERA5 land
products to be stationary, allowing us to apply the downscaling model
trained on snow observations from 2018 to 2022 to other periods.

The XGBoost regression model uses decision trees in parallel struc-
ture to capture nonlinear relationships between snow depth subgrid
variability and topo-climatic features. During the training, the structure
and splits of the trees are guided by the goal of minimizing the
prediction error on given loss functions. Two types of loss functions are
employed in separate model versions with slightly different purposes:
(1) Square error (reg:squareerror) as a loss function to estimate the
conditional mean of the target variable, this was the main method
used to generate the spatially distributed maps, and (2) Quantile re-
gression (reg:quantileloss) to give probabilistic predictions, such as
Q50 (median), Q25 and Q75, which are used for point-based down-
scaling at weather station locations, to gain insights into the uncer-
tainties of downscaling over time by validating predictions against
in-situ observation. The adoption of quantile regression is inspired by its
successful application in probabilistic forecasting (Meinshausen, 2006;
Zhang et al., 2018), for which no preknowledge of the target variable
distribution(e.g. a normal distribution) is required while being robust
to outliers. Quantile regression is therefore an ideal choice for our
downscaling task as it captures the full range of possible snow depth
values (e.g extreme values) under varying climatic conditions.

3 The XGBoost (version 2.0.0) library can be accessed at https://xgboost.
readthedocs.io/
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3.2.1. Topographic position index (TPI)

The TPI is a metric used to access slope position and classify
various landforms. It quantifies the difference between the elevation
of a central pixel and the average elevation of its neighboring pixels
(3 x 3 pixels). A TPI value of zero or near zero indicates a flat or
nearly continuous slope. Positive TPI values suggest that the central
pixel is significantly higher than the surrounding areas, forming a
ridge or hill. Inversely, negative TPI values indicate that the central
pixel is notably lower than its neighboring areas, signifying a valley.
TPI has proven effective in predicting snow distribution in alpine
environments (Revuelto et al., 2014; Cristea et al., 2017). To represent
landforms at different scales, we used two additional indices: tpi_9
(calculated in 9 x 9-pixel windows, equivalent to 90 m x 90 m) and
tpi_27 (270 m x 270 m).

3.2.2. Cumulative wind-aspect factor

The wind-aspect factor (W) (Bennett et al., 2022; Dvornikov et al.,
2015) serves as a proxy for snow accumulation and erosion on topo-
graphic obstacles. It assigns positive values on the leeward side and
negative values on the windward side of these features. We formulated
the relationship between wind and aspect by a cosine function that
ranges from —1 to 1 for any prevailing direction (see Fig. 3):

W = —cos(aspect — dir ;)

where dir,,,; is the direction of the wind origin with northerly wind
(blowing from north to south) referred to as 0°. This study further
divided W, into leeward Wf,mn,w and windward factors megmm, mul-
tiplied by wind speed to the power of three (Fig. 3 b) to capture the
cumulative effect of wind redistribution for each water year period.

— 3
W“fpasirive - z Wfposirive Yind

W”fncgmiva = z W/hegali(:e u3wind

where u,;,, is the monthly average wind speed from ERA5 Land,
linearly interpolated to 10 meters resolution. The accumulation begins
in September from zero until the next August when the value reaches its
maximum. The value does not accumulate when the monthly average
snow depth falls below 0.1 m during the annual cycle.

3.2.3. Calibration

In our study, the XGBoost downscaling model is tasked with pre-
dicting snow depth under a variety of conditions. We observed that
XGBoost tends to produce a conservative estimate close to the mean,
likely because the feature set does not consistently explain what critical
conditions lead to extreme snow depths. This conservative tendency is a
natural outcome of the model’s objective to minimize overall prediction
error, often resulting in a distribution that skews towards average
conditions and under-represents the extremes (known as scaling bias,
further discussed in Section 5.2). The calibration step scales the mod-
eled snow depth values so that their distribution matches the locally
observed snow depth distribution, using quantile mapping (Cannon
et al.,, 2015; Li et al., 2010). Thereby, while preserving the relative
snow depth predictions of the downscaling model, the calibration
removes the scaling bias for each specified quantile by a scaling factor
calculated from the control points, ensuring a good representation of
local snow depth distribution:

Xadj = Fal(FM(X))

Xad j

x

Here, x,,; denotes the calibrated prediction. For a given percentage,
as determined by the cumulative distribution function (CDF) of the
XGBoost downscaling model output F,,(x) and that of the observational
control points Fy(x,4;), the discrepancy between two distribution’s
quantiles is encapsulated by the scaling factor (4) for a given ratio.

A=
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3.3. Model interpretation and assessment

To interpret the contribution of topo-climatic features in our tree-
based models, we employed the SHAP values (Lundberg et al., 2020),
a metric derived from game theory facilitating the understanding of
the relative contribution of the model predictors (a.k.a. features). The
SHAP value corresponds to the contributions of each feature to individ-
ual predictions. A feature can either play for or against the prediction
(positive or negative SHAP value), and the magnitude of its SHAP
value shows the significance of the feature role. The sum of all these
contributions, plus the base prediction, provides the final prediction.

For fair comparisons, we aggregated all high-resolution valida-
tion datasets to the same resolutions. Model validation was conducted
across two different scales. At the micro to site scale (respectively 100
to 10 m), we captured snow distribution over typical micro-terrain fea-
tures such as hills and gullies using the original model output resolution
of 10 m. At the mesoscale, we aggregated data into a 100 m x 500 m
grid, reflecting the 500 m width of the ALS survey swath, with 100 m
intervals in the transect direction to obtain a good characterization
of snow depth variability across different aspects of hills and ridges.
Successful prediction would result in a (near-) perfect data match in
probability distribution and ranking correlation. To quantify the down-
scaling performance, we employ four key statistical metrics. RMSE and
R2 scores evaluate the overall accuracy and fitness of the model. R2
score is computed using the standard implementation of the Python
library Scikit-learn:

SSres
Ssmtal

where SS, represents the variation in the data that the fitted model
does not explain, expressed by the sum of squared residuals between
the model output and measured data, and SS,,; is the total variation in
the data, i.e., the sum of squared residuals with regard to the mean. The
R2 value typically ranges from 1 (perfect fit) to 0, but can be negative
if the model is evaluated on different data than used for training (as
in our case) and for nonlinear models typically used with the machine
learning approach (e.g. XGBoost, as used in this study). A negative R2
value means that the model performs worse than a constant function
that always predicts the mean. As R2 is sensitive to the presence of
bias, Spearman’s rank correlation coefficient (p) is used as a fidelity
metric, with a high p indicating good similarity in spatial distribution.
The Kolmogorov-Smirnov D statistic (KSD) quantifies the degree of
probability distribution matching, with KSD = 0 indicating a perfect
match. To compare the patchy snow distribution during melt-out season
with binary snow cover data from satellite imagery, we use the area
under curve (AUC) and Matthews correlation coefficient (MCC). For
these metrics, a value of 1 indicates a perfect match, whereas values
of 0.5 (AUC) and 0 (MCC) correspond to random guessing.

Additionally, we used variograms to quantify the model’s ability to
capture the spatial heterogeneity of snow depth. The semi-variance (y)

R2=1-

is a measure of spatial variability, calculated for pairs of observations
as half the average squared difference between values separated by a
specific lag distance (/) (Oliver and Webster, 2014):

(U
0= 380 ;(zxx,-) - 2(x; + )

where z(x;) represents the snow depth at location x;. The variogram
indicates the rate at which correlation decreased with distance. By
fitting variograms to the sum of the spherical model and Gaussian
model for short and long ranges, respectively (following the method
of Rolstad et al.,, 2009; Hugonnet et al., 2022), we identify spatial
correlation of snow distribution at different scales. The variograms are
computed using the xXDEM tool (Xdem contributors, 2021).

4. Results
4.1. Mesoscale snow depth variability

Fig. 4 shows the snow depth maps for April 2008. Model input data,
i.e., linearly interpolated snow depth from ERA5 Land (a), only rep-
resents large-scale variability. After downscaling, the fine-scale snow
depth variability aligns with the topography both at the microscale
(10 m, b) and aggregated to 1 km (d). In comparison, seNorge data
(c) at the same spatial resolution appear smoother with less spatial
variability and overestimate snow depth in the western mountains. The
differences between the two data sets are smaller for April 2009 where
there was generally less snow in Southern Norway (see Supplementary
Section E). A comparison of April 2008 snow depths at mesoscale for
flight line b is shown as a transect in Fig. 5. The ALS snow survey,
downscaled output (after calibration), seNorge, ERA5 Land data and
elevation are aggregated (averaged) to a resolution of 100 m x 500 m,
owing the ALS survey’s 500 m transect width. All datasets follow a
decreasing trend from snow depths exceeding 6 m to the West (close
to the coast) to around 2 m to the East (far from the coast).

The downscaled snow depths reveal impressive details in snow
depth spatial variability at the mesoscale that corresponds well to the
observed snow depth magnitude and spatial variability captured by the
ALS snow survey. The goodness of fit is similar for the other flight strips
(Figures S.7, S.8). Across the six flight lines, the calibrated downscaling
models score an R2 of 0.81 and an RMSE of 0.53-0.57 m (Table 1). We
achieve nearly as good performance at mesoscale when using the global
DEMs COP30 and FAB for ICESat-2 snow depth sample retrieval rather
than the Norwegian high-resolution datasets DTM1 and DTM10 (Figure
S.7). There are only minimal differences between output snow depth
maps and we did not detect any systematic biases, no matter which
DEM was used for snow depth sample retrieval. The results are similarly
good for the 2009 ALS snow survey (Figure S.8), with slightly lower
RMSE values of 0.50 m to 0.55 m that can be attributed to generally
lower snow depths in 2009.
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Fig. 4. Spatial distribution of snow depth in the Hardangervidda area, April 2008. (a) Downscaling model input, linearly interpolated snow depth from ERAS5 Land. (b) Downscaled
snow depth output at 10 m resolution. (c) seNorge snow depth at 1 km resolution. (d) Downscaled snow depth aggregated to 1 km resolution. Map coordinates are in meters

UTM 33N.

In comparison, R2 values of the (coarser-resolution) seNorge model
data compared to the ALS survey are lower (0.49 and 0.65) and
RMSE values higher (1.12 m and 0.60 m). The seNorge model shows
little spatial variability, is less sensitive to topographic features and
orographic barriers, and shows about 40% overestimation on the west-
ern mountain ridges but matches ALS data in the East. Melvold and
Skaugen (2013) attributed the overestimation of the seNorge model to
its strong reliance on weather stations located in low-elevation areas
not representative for high mountains.

Upon closer inspection, ALS ground truth data exhibit many spikes
on east-facing slopes (Fig. 5), likely resulting from wind redistribution
and gravity processes. Our downscaling model acknowledges the im-
portance of the aspect and wind-driven snow accumulation factors (see
also Fig. 9 c,g) but does not always reproduce corresponding snow
distribution in the correct places. ERA5 land snow depth input data
exhibit a north-south systematic bias, shifting from overestimation to
underestimation relative to the ALS data (Fig. 9 d). The model over-
corrects snow depths in the Eastern part of flight line b, resulting in
snow depth underestimation compared to the ALS survey.

4.2. Microscale snow depth variability

Fig. 6 compares the 2008 ALS snow survey with the downscaled
snow depth at a 10-meter resolution. The area shown, located in the
western part of flight line 2 (indicated in Fig. 1), exhibits distinct
microscale landforms, with sheltered depressions hosting thick snow
patches (>8 m) and wind-exposed hilltops featuring thin snow covers
(close to 0 m). This area was also shown in Melvold and Skaugen
(2013, Figure 3) to address the effect of spatial resolution on snow
depth representation. The terrain features align with the spatial lag that
exhibits significant autocorrelation of snow depth in the variogram in
Fig. 10(e), corresponding to ca. 100 m and 1.3 km.

The transect line (marked in white) in the downscaled output across
this varied terrain visually captures most of the observed pattern very

Table 1

Statistical comparison of snow depth estimates from different methods (downscaled
output with snow retrievals based on different DEMs, seNorge, and ERA5 Land) against
ALS snow survey data for all six flight lines (a—f) combined, for the years 2008 and
2009, respectively. R2, KSD and Spearmans’ p are unit-less, RMSE is in m.

Dataset April 2008 April 2009

R2 KSD »p RMSE  R2 KSD »p RMSE
DTM1 0.81 0.09 0.88 0.53 0.78 0.07 0.87 0.50
DTM10 0.82 012 0.88 0.56 0.79 0.08 0.88 0.513
COP30 0.80 0.10 0.88 0.57 0.75 0.07 0.84 0.554
FAB 0.81 0.11 0.89 0.56 0.77 0.07 0.86 0.54
SeNorge 0.49 021 0.84 1.12 0.65 0.13 0.86 0.60
ERA5 Land -0.79 0.27 071  0.82 -0.34 024 072 0.68

well. Extreme deep/shallow snow depths tend to be biased towards av-
erage values, but less so than if scaling calibration is not applied (Figure
S.6). While Spearman’s p of 0.77 indicates a strong rank correlation,
the relatively low R2 value of 0.34 and high RMSE of 1.33 m (panel
d) suggests a reduced statistical agreement compared to the mesoscale
analyzes. The KSD of 0.12 for the transect line and a mean deviation
of 0.28 m for the difference map indicate that the scaling calibration
of the downscaled snow depths, a single function applied to the entire
study area and not the shown sub-region specifically, does not fully
reproduce extreme values and results in a slight overestimation of
average snow depths in this sub-region. The residual differences appear
to be correlated with terrain features and match areas with remaining
snow patches in the DTM1, which we detect by comparing the DTM1
with the ALS snow-off data (Figure S.6 e).

4.3. Temporal variability of snow depth

The downscaling model is also able to propagate information in time
rather than only space. For this purpose, we used quantile regression



Z. Liu et al. Cold Regions Science and Technology 239 (2025) 104580
6
ERAS5 Land
°E
SeNorge 4 5
oy
3o
ALS reference %ﬁk’\ 2 é
= «
£ 1
Model output DTM1 B
odel outpul S o
8
.., — Downscaled - DTM1 - ERAS Land Downscaled output DTM1 (DTM10, COP30, FAB): 1400

Tl oaasT N ~ Downscaled - DTM10 seNorge R2:0.80 (0.82,0.78, 0.77) / RMSE (m) 049 (0 48, 0,‘@1 0.52)

6 —— Downscaled —COP30 —— ALS survey SeNorge R2: 0.49, RMSE: 1.11m RN 1300
E 5] —— Downscaled - FAB ---- Elevation ~------ A i \,‘ / 1200
£ =
o4 1100 §
N ®
EER 1000 &
S w
&

244 900

14/ 800

Figure 6
0
50000 60000 70000 80000 90000 100000 110000 120000
East [m]

Fig. 5. Snow depth profile of flight line b across Hardangervidda as shown in Fig. 1). Data is shown for April 2008 at mesoscale, i.e. averaged to 100 m x 500 m (flight strip
width) cells along the flight strip length of 80 km. Model outputs of the different DEMs are nearly identical. The map strips illustrate snow depth from ERA5 Land, seNorge, ALS
snow survey and downscaled model output using the DTM1 for the marked section of the datasets, before aggregation.
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Fig. 6. Microscale (10 m) snow depth comparison in the west Hardangervidda, April 2008. The validated area is located along flight line b, as shown in the study area map in
Fig. 1 and mesoscale snow depth profile in Fig. 5. (a) Transect line, marked white in panels b/c, (b) ALS snow survey validation strip with significant snow depth variations,
(c) downscaled snow depth, (d) differences between the ALS data and model output (background: DTM1 DEM). Common horizontal scales of landforms (95 m and 1.3 km) are

symbolized by black arrows in panel a.

for the downscaling model. The uncalibrated model output is shown
in Fig. 7, to enable analysis of the local bias and its evolution over
time. Time series data are shown for the data cell (10 m pixel size)
corresponding to the locations of three stations within the Hardan-
gervidda area: Sandhaug (a), Mogen (b), and Haukeliseter (c). The
predicted interquartile range Q25-Q75 (IQR, shown in yellow) provides
an estimate of snow depth predictions uncertainty. Q50 (blue line)
represents the median prediction. Visually, Q75 shows the best match
with the weather station data whereas input ERA5 data over- and Q50
model data underestimate measured snow depths (Table 2). (R2 of

0.71, 0.60, 0.76) The downscaled model (both Q50 and Q75) generally
performs similarly to the original ERA5 Land data across all stations.
R2 values range from —0.43 (Q50, Mogen) to 0.86 (Q50, Haukeliseter),
and do not describe performance well due to significant biases at the
individual site level. While the (uncalibrated) model exhibits bias in
predicting the absolute snow depths, the high Spearman’s p (0.91 to
0.95, ERA5: 0.92 to 0.96) across all three stations suggests that the
downscaling successfully maintains the relative ordering of snow depth
time series. The better agreement of Q75 with observations (compared
to Q50) could reflect either (1) a systematic 25% underestimation bias
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Fig. 7. Time-series validation of snow depth for three weather stations Sandhaug (a), Mogen (b), and Haukeliseter (c). Blue Dot: measured monthly mean and minimum/maximum
values (light blue), Blue line: median downscaled snow depth (Q50) and interquartile range (IQR) for 25th-75th quantiles (yellow). Note: Haukeliseter and Sandhaug data availability
starts from 2015 and 2014, respectively, and some years have missing data and incorrect measurements.

Table 2

Statistical comparison of monthly snow depth estimates from different methods (Downscaled output and ERA5 Land) against weather station

snow depth. RMSE is in meters.

Station Model — Q50 Model — Q75 ERAS5 Land

R2 KSD p RMSE R2 KSD p RMSE R2 KSD p RMSE
Sandhaug 0.29 0.20 0.94 0.39 0.71 0.17 0.95 0.29 0.73 0.21 0.96 0.44
Mogen -0.43 0.22 0.91 0.28 0.60 0.19 0.91 0.23 0.47 0.31 0.92 0.46
Haukeliseter 0.86 0.10 0.94 0.26 0.76 0.23 0.94 0.38 0.37 0.36 0.94 0.79

in the model, or (2) the local station measurements corresponding to
the Q75 percentile of the model’s predictions for similar conditions.
Bias is primarily observed for high snow depth values during the peak
snow season whereas the snow-free season is captured accurately. The
peak snow bias is different for the three sites but has a consistent
magnitude over time at each site. There are no indications of a better
fit for the training period (late 2018 to late 2022) compared to earlier
years. This suggests that the bias could be reduced or removed entirely
by a scaling calibration such as applied to the maps resulting from the
spatial propagation presented above.

4.4. Validating snow occurrence

Fig. 8 provides a visual comparison between the downscaling model
output and Sentinel-2 imagery for June 2020 in the lake Mgsvatn
area (Fig. 1). The figure shows the model’s accuracy in predicting the
occurrence of snow during the rapid melt period. The downscaled snow
map from our model visually shows a high level of agreement with
the satellite snow extent on June 24, 2020, capturing the remaining
snow patches aligning with topographical features (Fig. 8c, d). Panel
(e) and (f) show that east-facing slopes retain more snow compared
to west-facing slopes, a pattern that our model successfully captures.
Closer inspection reveals that the model retains a thin snow layer in

10

most areas as well as minor discrepancies in snow distribution. Some
of these differences can be explained by the binary nature of Sentinel-2
snow cover and a temporal mismatch, with the Sentinel-2 image taken
on a specific day and the model output representing a monthly mean
snow depth for June. In particular, the model tends to systematically
overestimate snow coverage for specific terrain (indicated by the white
circle), such as steep slopes, and underestimates snow coverage for cer-
tain terrain features (white circle). To express the match quantitatively,
we converted the model output to snow occurrence/probability using
a threshold of 0.3 m for full snow cover, and the Sentinel-2 data to a
binary reference by computing the Normalized Snow Difference Index
(using a threshold of 0.42, as recommended by the Sentinel-2 data
provider Copernicus). For the area shown in Fig. 8 (extent of panels
a, b), we receive a Matthews Correlation Coefficient of 0.35 and an
Area Under the Curve (AUC) value of 0.76, both indicating acceptable
model performance. For a dynamic view of snow occurrence variability,
please refer to the video in the supplementary materials.

4.5. SHAP analysis and variogram assessment

The most informative relationships between input features and
predicted subgrid variability are listed in descending order. Elevation
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Fig. 8. Validation of snow occurrence using Sentinel-2 imagery for the Lake Mgsvatn area (annotated in Fig. 1). (a) modeled snow cover distribution for June 2020, (b) Sentinel-2
image on June 24th, 2020. Panels (c) and (d) show local discrepancies in snow distribution, (e) and (f) show correctly modeled snow retention on east-facing versus west-facing
slopes. The overestimation on steep slopes and underestimation in flatter terrain are annotated with white circles.
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(2008) and downscaling model outputs at 10 m resolution. Note the limited capture of
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(h_te best fit) emerges as the most significant factor, with higher el-
evations positively influencing subgrid snow depth (Fig. 9a). Snow
depth from ERA5 Land also has a high impact, however, both very
shallow snow depth and deep localized snow depth exist (Fig. 9a,
b) where (sde_era) is high, owing to the low spatial resolution of
the data not capturing the variable topography. Notably, relatively
deeper snow (indicated by high SHAP values in Fig. 9b, c) is estimated
by the downscaling model in concave terrain (negative TPI) with an
east-facing slope. In contrast, thinner snow (lower SHAP values) is
associated with convex (positive TPI) and west-facing slopes. The model
estimates higher snow depths for the two northernmost ALS flight strips
of the study area than the southern part (Figs. 9d, 5). The positive
cumulative wind aspect factor (wuf positive) contributes to preferential
snow accumulation and shows a stronger influence than the negative
wind aspect factor (wf negative, Fig. 9f, g). Most wind aspect factor
data points have small values indicative of low wind speeds. These
show much variability in their SHAP value, indicating unexplainable
variance. The SHAP method cannot distinguish the contributions from
correlated features such as the apparent importance and positive in-
fluence of slope, which might partly be caused by correlated features
such as elevation and curvature. The phenomenon of having less snow
on very steep slopes (e.g. >50°) is not observed (Fig. 9a), rather, the
model associates high slopes with a positive SHAP value that indicates
greater snow depths.

The empirical semivariogram in Fig. 10 shows that the downscaling
models based on all DEM versions adequately capture the spatial vari-
ability and autocorrelation of snow depths in the Hardangervidda area,
but suggests stronger spatial dependence at short ranges for ALS data
than downscaled snow depths (ca. 80% and 50% of the total variance
at 100 m lag). The distance of ca. 100 m corresponds to the wavelength
of depression features commonly observed in the area (Fig. 6). Overall,
the downscaling model exhibits ca. 20% less variance than the ALS
data. At a distance of ca. 1300 m, the semi-variance for all datasets
approaches the sill. This distance aligns closely with the typical size of
hillslopes in this region, as depicted in Fig. 6. The interpolated SeNorge
product, based on precipitation gradients, temperature—elevation lapse-
rates and disregarding wind processes, has a resolution too coarse to
resolve the hillslope-scale snow depth variability.

5. Discussion
5.1. Bias in elevation datasets

This study shows that ICESat2 ATLO8 data is not just capable
to retrieve snow depths, thus confirming previous findings by other

12

Cold Regions Science and Technology 239 (2025) 104580

authors (Deschamps-Berger et al., 2023; Enderlin et al., 2022; Tian
and Shan, 2021; Besso et al., 2024), while also improving snow depth
retrieval through co-registeration and rectification of DEMs. Previous
studies have in common that retrieved snow depths are biased by
remaining discrepancies and errors in the DEM/ICESat-2 data such as a
slope-dependent bias. The bias correction introduced in our workflow
can reduce errors that depend on first and second-order derivatives
(slope/curvature). Several studies pointed to ICESat-2 as the primary
source of this bias, as ICESat-2 ATLO8 data tends to underestimate
surface height under certain conditions. Moudry et al. (2022) attributed
the error to the presence of clouds and corresponding increasing atmo-
spheric scattering effects leading to an increased photon travel time
and, consequently, underestimating terrain height. Furthermore, the
100 m segment length of ATLO8 (e.g. htemean used by Enderlin
et al. 2022) is considered insufficient for accurately mapping steep and
rugged terrain Besso et al. (2024). Therefore, Enderlin et al. (2022)
recommended using ATLO8 only in areas with relatively low slopes
and sparse vegetation cover. We also observed that bias is higher in
the Hardangervidda area than in other, flatter parts of Norway, such
as Finnmark (not shown in this paper). In our data sample, a large
number of negative snow depth measurements were present before
bias correction. Directly excluding these negative snow depths (without
further bias correction) would result in unbalanced training samples.
A correction solely based on the slope, as proposed by Enderlin et al.
(2022) and Tian and Shan (2021), did not remove bias sufficiently for
the ICESat-2 measurements to be used as model input for the downscal-
ing. We find resolution-dependent biasing effects for the tested DEMs
with regard to curvature that are essential to correct for accurate snow
depth retrieval (Supplementary Section B). For Norway, we found that
the spatial resolution of the ATLO8 data is better than COP30 (30 m)
when using h te best fit elevation values fitted to the middle 20 m of
the 100-m-ATLO8 segment (Supplementary Section B).

Also the snow-off DEMs hold potential limitations for ICESat-2-
derived snow depths in certain terrain, especially high mountain or
Arctic areas where the snow-free season is short and some snow patches
remain during summer. Typically, some snow at the highest elevations
is of little concern for general-purpose DEM data distributors who need
to balance requirements of numerous DEM applications. The DTM1
was acquired during June/July according to metadata, under summer
conditions. From comparison with ALS snow-off data (Figure S.6), we
find that the Hardangervidda area was not entirely snow-free for any
of the four tested DEMs nor the Arctic DEM (Porter et al., 2022).
Remaining snow on the supposedly snow-free reference results in an
underestimation of snow depth in parts of these areas, with typical
topographic signatures (e.g., shaded depressions). Additionally, in areas
with long snow cover duration there are fewer snow-free ICESat-2
segments available. Consequently, the bias correction introduced in
this study may not be able to correctly capture and remove this bias,
leading to underestimation of high snow depths. When comparing our
downscaled snow depths with the ALS validation data, we find that
on the microscale, the residuals are highly associated with a preferen-
tial snow deposition pattern. The systematic underestimation of deep
snow depths is even more prominent in the downscaled output if the
calibration step is not applied (Figures S.8, S.9). The bias correction
and calibration steps only indirectly correct for the biasing effect of
remaining snow patches on retrieved/downscaled snow depths. They
also address other bias effects (see Section 5.2). Future work should
thus include a targeted correction of the DEM data for remaining snow
patches. This would improve our results and potentially reduce the
need for the currently calibration step.

Enderlin et al. (2022) deemed COP30 data too imprecise for estimat-
ing snow depth. Encouragingly, our results demonstrate that the COP30
and FAB DEMs improved after bias correction, and performed compara-
bly with DTM1 and DTM10 at mesoscale in treeless areas (Figure S.7).
We attribute this to the bias correction step in our workflow which
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successfully removes bias for all four tested DEMs (Supplementary ma-
terial). We are thus confident that the regression-based bias correction
is transferable to other regions for the same (global COP30 and FAB
DEMs) or different DEM products. As the training area and sample were
very large and diverse in this study (entire Norway), further research on
the bias-correction method could examine the applicability to different
landscapes/topography or the influence of the size of the area and
the ICESat-2 snow-off sample. We note that the remaining elevation
error of 0.48-0.62 m (NMAD after bias correction) for DTM1 and FAB,
respectively, may be acceptable for deep snow or a snowpack highly
affected by wind redistribution (e.g. this study), but can exceed the
thickness of shallow snow packs. The influence of uncertain individual
samples is mitigated by the approach of this study, where the ICESat-
2 measurements are used as a training sample for a downscaling
algorithm rather than on their own. The uncertainty may be reduced for
regions with less snow depth variability, lowering de-facto the absolute
magnitude of discrepancies between observations and model outputs.
Further research is needed to better understand the effect of the snow
depth sample uncertainty on the downscaled snow depth maps, in
particular the poor representation of extremes. It should also be noted
that in this study, terrain parameters used for downscaling are based
on the DTM10. The spatial resolution of the COP30 and FAB DEMs is
coarser (30 m) than our model output resolution (10 m) and they were
used for snow depth retrieval only, not for downscaling. When applying
our workflow to other regions the spatial resolution of the output snow
depth maps will therefore be limited by the available DEM.

This study only validates the downscaled snow depths above the
tree line and further work is needed to assess the performance of the
proposed workflow in forested areas where ALS validation data is avail-
able. We expect that more, or different predictors may be needed to
capture information on snow-canopy processes (Mazzotti et al., 2023)
influencing the accumulation and ablation of snow. High-resolution
lidar data allows for the removal of vegetation, but global-scale DEMs
are usually based on photogrammetry or radar interferometry, which
may not exclude vegetation cover. There are efforts to create global-
scale vegetation-free DEMs like the FAB DEM included in this study,
and further developments are expected from machine-learning algo-
rithms. Currently, for the high elevation accuracy required for snow
depth retrieval, we recommend to be cautious about using COP30 and
FAB in forested areas, as vegetation is hardly (fully) removed.

5.2. Snow depth downscaling

Tree-structure models perform well in capturing nonlinear relation-
ships. The model used in this study provides reasonable predictions
for snow depth. However, unless calibration is applied, our approach
leaves a significant amount of variability unaccounted for, particularly
for periods/areas with deep snow depths as observed in the time series
analysis (Fig. 7) or in the snow depth maps (Figures S.8, S.9). The
underestimation of spatial variability arises from several factors: i) the
regression model’s inherent limitations, ii) a likely imbalance of the
training samples, and (iii) the limitation of the predictors to capture
physical processes driving the redistribution of snow.

Inherently (i), deterministic regression models primarily yield con-
ditional means and may not adequately represent extreme events,
especially when key features do not fully explain variations. This often
results in underfitting as the models strive to minimize overall predic-
tion errors. Additionally (ii), the spatial distribution of snow depth is
inherently scale-dependent (Melvold and Skaugen, 2013; Mott et al.,
2018), meaning a sensor’s spatial resolution is critical in determining
captured variability. Our training samples, derived from the ICESat-2
ATLO8 elevation product, correspond to an area of ca. 20 m x15 m,
which is better than previous study cases but still averages out for finer-
scale variability. ICESat-2’s sparse spatial sampling pattern with several
kilometers gap between sampled snow depth profiles, combined with
a 92-day revisit period of the satellite and possible cloud cover leads
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to substantial gaps in seasonal data coverage. Data points with high
snow depth measurements are thus likely to be relatively few. ICESat-
2’s elevation data, derived from a ground-finding algorithm that uses
a probability distribution function (PDF) of reflected photons (Neuen-
schwander et al., 2022), can vary in quality depending on the terrain.
In rugged terrain where snow depth is typically the deepest, noise or
unbalanced sampling can lead to misrepresentation of extreme values.

The shortcomings of the model and data sample could be mitigated
if model predictors were able to fully capture spatial variability of
snow depth and its underlying physical processes (iii), which is not the
case. ERA5 Land input snow depth values may provide incorrect prior
information as the dataset seems to contain interpolation effects that
are possibly a downscaling artefact from the production of ERA5 Land
from the coarser ERAS5 data (Hersbach et al., 2020). For example, snow
depth values are much higher for ERA5 Land grid cells on or adjacent to
large glaciers like the Jostedalsbreen ice cap in Southern Norway, and
lower for grid cells on or adjacent to large water area. Consequently,
although we have excluded all glaciers and lakes, neighboring ERA5
Land grid cells still contain these biasing effects. There, the predicted
subgrid variability is not solely a reflection of inherent snow conditions
but is significantly influenced by this spatially-dependent bias that the
model needs to detect and correct for based on spatial information,
i.e coordinate features (N, E). This highlights the importance of dense,
localized sampling of ICESat-2 snow depths, which may be challenging
for smaller study areas and for lower latitudes, given ICESat-2’s sparse
sampling pattern. By expanding the training area, as done in this study,
the model benefits from more samples but might also learn a more
generalized, averaged representation of snow depth.

Among the predictor features, elevation emerges as the most sig-
nificant, as expected from the temperature-elevation relationship, oro-
graphic and precipitation shadowing effects (Mott et al., 2018; Parr
et al., 2020) where also aspect plays an important role. The TPI at a 90-
meter scale is a strong predictor (Fig. 9) and corresponds to the size of
terrain features in our study area. However, these predictors represent
general patterns only. They are not sufficient to represent the locally
different snow depth variability. Here, the cumulative effect of multiple
snow transport events over an entire winter season plays a crucial role.
By refining the wind-aspect factor (Bennett et al., 2022; Dvornikov
et al.,, 2015) into new cumulative values to describe wind redistri-
bution (i.e. accumulation or erosion), our model is able to explain a
considerable amount of the observed preferential snow deposition (Fig.
9g). Erosion is not well captured (Fig. 9f) by the downscaling model.
There is potential to improve wind-related predictors, as the spatial—
temporal resolution of wind fields from ERA5 Land monthly data is
likely insufficient for capturing complex wind-topography interactions.
Downscaling of wind fields (Fiddes et al., 2022; Toumelin et al., 2023)
could enhance the model’s ability to capture wind-driven variability.
Additionally, the model does not account for the impact of wind on
the energy balance at the snow-atmosphere interface, involving sensible
and latent heat exchanges (Mott et al., 2017), a factor crucial to the
dynamics of a snowpack. The choice of predictors in this study is
based on our expertise and corresponds to commonly used predictors
in statistical modeling of snow distribution. This choice inherently
introduces bias as the predictors are not able to explain the entire
variability. Future research could benefit from incorporating more
features that are related to physical snow processes or the integration
of snow melt-out information from fractional snow cover data from
optical satellite imagery (Gascoin et al., 2019) commonly used in snow
data assimilation schemes with process-based models (Margulis et al.,
2016; Mazzolini et al., 2024). Used as an exploratory tool, the model
might assist in learning what processes are at play and how to best
represent them statistically, ideally leading to a simplification of the
workflow.

The calibration step uses quantile mapping based on the observed
cumulative snow depth distribution function during 2009 peak snow
conditions in the Hardangervidda area. Our selected control points
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cover the entire study area (~1.5 points per square kilometer), en-
suring a comprehensive correction across all regions analyzed. While
greatly improving our results, especially for the reproduction of ex-
tremes values, the need of a scaling calibration is a disadvantage
for an extrapolation of our method to global applications. The slight
underestimation of snow depths for the presented western sub-region
in the validation area (Fig. 6) suggests that the single scaling function
obtained from the Hardangervidda area does not fit the sub-region
perfectly, and a locally adjusted scaling might result in a better fit.

Future research is needed to determine optimal training/model
area sizes or transferable scaling calibration functions for areas with
different topography and climate. However, extensive, other publicly
available snow depth reference datasets like the Hardangervidda ALS
dataset are currently not available for Norway and are generally very
rare. In the western United States, the Airborne Snow Observatory
data (ASO; Painter et al., 2016) includes multi-temporal snow depth
maps of several large catchments that could be suitable to examine
the local dependency of our downscaling approach and further develop
the method. Similarly, the lidar dataset collected in Northern Alaska
by Parr et al. (2020) could be used to train for an Arctic snowpack.
As an alternative to using extensive validation data for model result
calibration, future research could explore the use of small representa-
tive snow depth distributions such as strategically chosen, smaller snow
depth maps from drone-based surveys, data from snow courses, or snow
depth measurements from meteorological stations.

5.3. Validation

Snow depth distribution in alpine environment is influenced by
distinct processes occurring at various spatial and temporal scales. Our
model demonstrates high fidelity of snow distribution patterns even
at the microscale (Fig. 6¢), though with lower performance metrics
compared to the mesoscale. Our findings complement the insights
from Mott et al. (2018), which recommend a resolution finer than
50 meters to capture the spatial variability inherent to wind-driven
processes. For example, Trujillo et al. (2007), Mott et al. (2011) and
Mendoza et al. (2020a) report a distinct ’scale break’ at around 100 m,
with a stronger spatial autocorrelation of snow depths below the scale
break than beyond. Such spatial correlation can be attributed to the
wavelength of wind-driven snow accumulation features (Mott et al.,
2018). The ALS data and our model output identified the presence of
scale breaks and dependence on terrain features (95 m accounting for
79% variance for ALS data and 108 m for 60% variance for our model,
Fig. 10), demonstrating the effectiveness of our scheme in capturing
a high level of spatial details and the impact of landscape patterns.
Notably, we also found a scale break at 1300 m by fitting the empirical
variograms at two different ranges, which corresponds to the wave-
length of ridges in this area (Fig. 10). These scale breaks underscore
the critical resolution and minimal survey scope required to accurately
capture spatial variability over the hillslope. Such insights are pivotal
for designing snow surveys or evaluating snow models/products.

RMSE or R2 are standard metrics for evaluating regression model
performance, focusing primarily on overall accuracy and fit. However,
they may not adequately capture the variability and structural patterns
in snow depth distribution, especially at the microscale. Figs. 6 and
7 show high signal fidelity (high Spearman rank correlation) however
with poor R2. To enhance the evaluation of regression outcomes for
snow depth subgrid variability, it is essential to consider the scales
involved and incorporate additional metrics. As an alternative to the
Spearman rank correlation used in this study, structural similarity index
measure (SSIM, Parr et al. 2020) might be a suitable metric to capture
relative similarities.
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5.4. Application

Current limitations of ICESat-2 data, including the month-long data
availability lag and significant spatial and temporal gaps, restrict its
utility (Deschamps-Berger et al., 2023). Spatio-temporal propagation of
ICESat-2 snow depths by use of modeling is thus the logical next step to
produce timeseries of snow depth maps and make this data useful for
wider applications. Hereby, standard statistical models that solely de-
pend on topographic features for snow spatial distribution fall short on
temporal variability. Our workflow resolves many of these constraints
by incorporating temporal variability from ERA5 Land. Other emerging
approaches to create snow depth maps from ICESat-2 data include
combining ICESat-2 snow depths with snow cover information and a
process-based model within a data assimilation framework (Mazzolini
et al. 2024, using higher-resolution snow depths from ATLO3 data) or a
combination of deep learning and probabilistic data assimilation meth-
ods (Guidicelli et al. 2023, using snow depth tracks synthesized from
snow depth maps to mimic ICESat-2 snow depths). Both approaches
yield promising results and also use ERA5 Land data as forcing, thus in
principle globally applicable, but focusing on smaller catchments and
coarser spatial resolution than presented in this work. Future research
could focus on comparing or merging these different approaches.

Notably, we find that the performance of aggregated downscaled
snow depth is not sensitive to the absolute precision of the reference
DEMs (Supplementary Section D), indicating that our approach is not
limited to areas with high-resolution DEMs but can be applied using
global DEMs in treeless conditions globally. However, careful consid-
eration is required when applying this workflow to new study areas or
applications:

1. Global DEMs like the Copernicus GLO-30 or FABDEM are a
patchwork of data from satellite-derived DEMs and local/na-
tional data sources and may not have equally good quality in
different regions,

2. Care has to be taken to ensure including enough ICESat-2 sam-
ples in/around the target area. Areas further south will have
larger coverage gaps due to ICESat-2’s sampling pattern that
is densest at the poles. Upcoming ICESat-2 data expected for
several more years will mitigate this

3. Applying calibration with the most representative field survey

4. Accounting for regional climatic variability that some area are
heavily influenced by specific weather events or patterns.

The workflow described herein is applicable to a range of applica-
tions in need to assess snow distribution patterns where sparse snow
observations exist. For example, our workflow can (1) mitigate data
gaps in remote areas spatially and temporally, e.g. by interpolating
and extrapolating weather station observations (Fig. 6, 7), (2) help to
plan and reduce cost of new snow surveys (e.g coordinating surveys
with ICESat-2 coverage), (3) improve local estimates of snow water
equivalent in large alpine watershed, and (4) be combined with a
classical snow modeling approach. Suppose a snow model provides
not just average value snow depth, but also a probability density
distribution representing the subgrid variability (Gisnas et al., 2016),
such a curve can then be translated into a snow depth map using our
snow downscaling scheme.

In the current implementation, we observe some limitations in
extrapolating the method in time, or simulating timeseries for a single
point. First, our current implementation assumes stationarity of ERA5
Land data. For instance, Kouki et al. (2023) found discontinuities in
the ERAS5 Land snow products around 2004 due to the introduction of
new satellite products in the assimilation scheme. Other stationarity
issues may arise from the method used to generate ERA5 Land with
successive spin-up periods (1949, 1981, 2001; Munoz-Sabater et al.,
2021) or due to changed climate conditions in the future. An alternative
to expand the temporal extrapolation and improve stationarity issues
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would be to employ an energy-mass balance snow model like Crocus
or Snowpack (Vionnet et al., 2012; Bartelt and Lehning, 2002) using
ERAS5 as forcing. Such snow reanalysis approaches were found to
be better at estimating snow water equivalent (SWE) globally than
methods based on passive microwave observations (Mortimer et al.,
2020). Our statistical approach performs well compared to the seNorge
product, but there is currently no physically-based snow reanalysis
available at a comparable spatial resolution in Norway. Any subsequent
application of the proposed approach will require careful assessment
of uncertainties and the quality of input data, including ERA5 Land
stationarity. Second, simulating snow depth at the point scale as shown
in Section 4.3 shows poor agreement with station measurements (Table
2), and the application of a simple correction factor to ERA5 Land
timeseries would likely yield better results. This is partly due to various
local processes that may affect snow distribution not captured by the
model (e.g. localized wind field in respect to terrain, radiation, etc.)
or locally disturbing the weather station, but also the model capabili-
ties and design with mostly spatially constant input features. Further
studies should consider adding predictor features that consider time
explicitly or in a summarized way over the course of the snow season,
such as a radiation or heat index (Cristea et al., 2017) or annual snow
melt-out dates from fractional snow cover data.

Given careful calibration and information on snow density, the
presented cost-efficient subgrid parameterization for snow depth could
be used to estimate SWE or to correct precipitation/snowfall bias in
snow models (Girotto et al., 2024), to eventually serving as input
for discharge modeling (Helbig and van Herwijnen, 2017). Microscale
snow depth maps could benefit studies of ecosystems in snow-covered
regions, from habitat availability for wildlife (Liston et al., 2016) to
plant phenology under the snowpack (Niittynen and Luoto, 2018).
Snow depth parametrizations/distributions at the mesoscale for large
areas or detailed snow depth maps at the microscale are crucial for
local permafrost studies (Gisnas et al., 2016).

6. Conclusion

This study introduces a workflow for snow depth retrieval from
ICESat-2 ATLO8 and DEM data to downscale ERA5 Land snow depth
data using XGBoost tree-structure machine learning models. The two
datasets, ICESat-2 and ERA5 Land, have complementary resolutions in
space and time that allow for the generation of accurate monthly snow
depth maps at the hillslope scale. Hereby, ERA5 Land data primarily
provides the temporal variability, and ICESat-2 the spatial variability
in snow depths, propagated in space using terrain features and other
relevant predictors to train the downscaling model. Advanced bias
correction and calibration are part of the workflow to address inherent
systematic errors present in the data and correct for residual bias.

(1) There are few snow depth observations available in remote
areas, and to this day, no inexpensive ways to map small-scale
variability exist. Here, ICESat-2 ATLO8 data as presented in our
workflow of co-registration and bias-correction stands out as a
valuable data source.

The downscaling-calibration scheme’s performance to predict
peak snow for 6 x 2 ALS flight strips in the Hardangervidda
is very good at mesoscale (100 x 500 m, R2 values ranging
from 0.74 to 0.88). At microscale (10 m), the spatial snow depth
pattern is captured very well but absolute values are less so.
The model is also able to represent the spatial pattern of snow
melt-out during late spring as visible from snow cover satellite
data.

We introduce a new cumulative wind-aspect factor in the down-
scaling model that estimates snow wind re-distribution from
ERAS5 Land monthly wind fields in a cumulative way. This factor
has a high predictive strength for the spatial distribution of snow
depth at micro- and mesoscale in the downscaling model.

(2)

3
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(4) The downscaling model is sensitive to systematic bias in the
elevation data, like slope- and curvature-dependent bias, which
is more critical in global DEMs. Our bias correction demonstrates
significant improvements in such DEMs. Therefore, similar re-
sults can be obtained when using the global DEM Copernicus
GLO-30 (30 m spatial resolution) compared to the Norwegian
national DEM (DTM1) at 1 m spatial resolution.
Post-calibration of downscaling model results is currently nec-
essary to compensate for the model’s under-representation of
extreme values. This under-representation is likely caused by
inherent model behavior (tending towards average values), re-
maining bias and the nature of the training data. Biasing fac-
tors include persistent snow patches on supposedly snow-free
reference DEMs, simplified representation of wind processes,
under-sampling and underestimation of high snow depths in
ICESat-2 data, and temporal non-stationarity in ERA5 Land data.
Future research and more adaptable calibration methods for
varied scenarios may improve results and remove the need of
post-calibration.

)

The result of this work is a scalable and explainable downscaling
model. It provides a heuristic data-driven solution to model snow depth
spatio-temporal variability, especially in mountainous regions. While
the validation is specific to Hardangervidda in southern Norway the
workflow could be applied to other non-vegetated, snowy regions of
the world given an existing local calibration dataset.
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