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 A B S T R A C T

Estimating the variability of snow depth in remote areas poses significant challenges due to limited spatial 
and temporal data availability. This study uses snow depth measurements from the ICESat-2 satellite laser 
altimeter, which are sparse in both space and time, and incorporates them with climate reanalysis data 
into a downscaling-calibration scheme to produce monthly gridded snow depth maps at microscale (10 m). 
Snow surface elevation measurements from ICESat-2 along profiles are compared to a digital elevation model 
to determine snow depth at each point. To efficiently turn sparse measurements into snow depth maps, a 
regression model is fitted to establish a relationship between the retrieved snow depth and the corresponding 
ERA5 Land snow depth. This relationship, referred to as subgrid variability, is then applied to downscale 
the monthly ERA5 Land snow depth data. The method can provide timeseries of monthly snow depth maps 
for the entire ERA5 time range (since 1950). We observe that the generic output should be calibrated by 
a small number of localized control points from a one-time field survey to reproduce the full snow depth 
patterns. Results show that snow depth prediction achieved a 𝑅2 model fit value of 0.81 (post-calibration) at an 
intermediate scale (100 m × 500 m) using datasets from airborne laser scanning (ALS) in the Hardangervidda 
region of southern Norway, with still good results at microscale (𝑅2 0.34, RMSE 1.28 m, post-calibration). 
Bias is greatest for extremes, with very high/low snow depths being under- and overestimated, respectively. 
Modeled snow depth time series at the site level have a slightly smaller RMSE than ERA5 Land data, but 
are still consistently biased compared to measurements from meteorological stations. Despite such localized 
bias and a tendency towards average snow depths the model reproduces the relative snow distribution pattern 
very accurately, both for peak snow (Spearman’s 𝜌 0.77) and patchy snow meltout in late spring (Matthews 
correlation coefficient 0.35). The method relies on globally available data and is applicable to other snow 
regions above the treeline. Though requiring area-specific calibration, our approach has the potential to provide 
snow depth maps in areas where no such data exist and can be used to extrapolate existing snow surveys in 
time and over larger areas. With this, it can offer valuable input data for hydrological, ecological or permafrost 
modeling tasks.
1. Introduction

In a warming world, understanding the spatio-temporal variations 
of seasonal snow is increasingly vital for climate impact assessments, 
meltwater supply (Immerzeel et al., 2020; Livneh and Badger, 2020), 
permafrost modeling (Gisnås et al., 2016) and ecological responses
(Callaghan et al., 2011). Seasonal snow accumulates and melts away 
once a year in a number of climatic zones from, for instance, the 
forested regions of the taiga (largest terrestrial ecosystem), the open 
tundra of the Arctic and many high mountain ranges throughout the 
world (Sturm and Liston, 2021). Being white, snow is easily observable 
from space. However, its thin nature (typically less than 2 m) makes 
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it very challenging to measure snow thickness or mass from space 
at a large scale and with high repeatability. The complex processes 
driving snow metamorphism and precipitation estimation are hurdles 
too to rely on models for assessing seasonal snow dynamics. Observing 
and modeling seasonal snow at a large scale therefore remains a 
challenge (Tsang et al., 2022; Mudryk et al., 2020). This is exacerbated 
in remote and complex terrain with limited data availability (Bormann 
et al., 2018).

A major persistent gap is observing or estimating snow depth and 
water equivalent over mountain regions. In-situ point-based snow sta-
tions are generally located in gentle terrain at lower or mid-elevation, 
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often under-representing rugged and higher elevation (Fassnacht et al., 
2018). Employing sensors on airplanes or UAVs (unmanned aircraft 
vehicles) offers very high-resolution data (Bühler et al., 2016), but are 
costly, of limited spatial extent and potentially with legal flight restric-
tions. However this can be an effective approach for watershed-scale 
snow depth mapping (Deems et al., 2013).

Otherwise, space-borne technologies can cover systematically large 
to global extents at regular intervals. Two main technologies exist 
to retrieve snow depth: radar and laser altimetry. Radar has sev-
eral issues with footprint size, penetration depth, snow wetness, and 
modeling effects due to scattering (Dietz et al., 2012). For instance, 
passive microwave radar with a footprint size of up to 25 km is 
insufficient to capture the heterogeneous snow depth in mountainous 
terrain Tsang et al. (2022), Mudryk et al. (2020). Despite recent tech-
nology development in C-band radar enabling snow depth retrieval at 
resolutions ranging from 500 meters to 1 kilometer under dry snow 
conditions (Lievens et al., 2019, 2022), finer-scale snow depth remains 
poorly addressed (e.g. 100 m resolution, Grünewald et al. 2010, Mott 
et al. 2018). Another approach for high-resolution snow depth retrieval 
is to use laser scanning or photogrammetry. Both methods provide 
snow depth by collecting surface height data pre- and post-snowfall, 
enabling snow depth mapping by differencing elevations. Recently, 
there has been a significant effort to retrieve snow depth by combining 
snow-free digital elevation models (DEMs) with space-borne lidar mea-
surements of the snow surface from ICESat Treichler and Kääb (2017) 
and its successor ICESat-2 (Neuenschwander and Pitts, 2019). This 
cutting-edge satellite offers high-resolution, accurate lidar elevation 
profile measurements of the Earth’s surface, including snow-covered 
terrains.

Deschamps-Berger et al. (2023) derived snow depth from the ICESat-
2 ATL06 products and reported an accuracy of 0.2 m (bias) and a 
precision (normalized median absolute deviation; NMAD) of 0.5 m 
for low slopes and 1.2 m for steeper areas over the upper Tuolumne 
basin, California, USA. Enderlin et al. (2022) found that snow depth 
estimates based on ICESat-2 data had a median absolute deviation 
(MAD) ranging from 0.2 m for slopes < 5◦ to over 1 m for slopes > 
20◦. Besso et al. (2024) questioned the varying accuracy of the ICESat-
2 ATL08 product and developed a self-defined processed elevation 
product, which achieved a MAD of 0.14 m to 0.20 m and root mean 
square error (RMSE) of 0.18 m to 0.33 m for the Tuolumne Basin 
and Methow Valley, USA. These studies have uncovered ICESat-2 as 
an emerging and cost-efficient data source for snow depth and also 
brought attention to challenges associated with the data and elevation 
differencing workflow, primarily stemming from discrepancies and 
spatially/temporally varying inconsistencies between reference DEMs 
and ICESat-2. Therefore, implementing and improving this workflow 
requires careful co-registration and bias correction on DEMs & ICESat-
2. Additionally, the sparse nature of ICESat-2 measurements presents 
another significant challenge to deriving comprehensive snow-depth 
maps: how can we extrapolate both spatially and temporally to areas 
outside of the ICESat-2 measurement profiles?

Another approach to understanding snow dynamics is through 
snow modeling. Researchers primarily use two modeling strategies to 
study these dynamics, namely process-based and statistical approaches. 
Process-based models (Lehning et al., 2006; Liston and Elder, 2006; 
Kim et al., 2021) incorporated physical processes, which are driven 
by meteorological forcing data and yield gridded snow depth prod-
ucts. Mazzolini et al. (2024) combined snow depth transects from 
the high-resolution ICESat-2 ATL03 product with snow modeling in a 
data assimilation framework. They spatially propagated sparse ICESat-
2 snow profile information using an abstract distance measured in a 
feature space defined by topographical parameters and snow melt-out 
climatology. For the 1 km2 Izas catchment in the Spanish Pyrenees, 
they show that adding snow depth information in addition to the tra-
ditionally used fractional snow-covered area observations improves the 
model skill score by 22%. However, these models are computationally 
2 
costly and thus often struggle to cover large areas or provide fine 
resolution. Models are hindered by complex near-surface atmospheric 
processes and limited data on precipitation and wind fields (Freudiger 
et al., 2017), leading to a new question: how to quantify the subgrid 
variability of snow depth (Clark et al., 2011)? The distribution patterns 
of snow exhibit a notable resemblance year after year due to their de-
pendence on topography, vegetation, and consistent synoptic weather 
patterns (Sturm and Wagner, 2010; Parr et al., 2020). The consistent 
recurrence of this pattern supports the use of computationally efficient 
statistical approaches. Many studies seek to establish parameterizations 
for subgrid variability, such as snow depletion curves, snow depth 
elevation gradients, snow probability distribution (Mendoza et al., 
2020b), subgrid snow depth coefficient of variation (Liston, 2004; He 
et al., 2019; Gisnås et al., 2016) or topographic correlations (Helbig and 
van Herwijnen, 2017; Mazzolini et al., 2024). Learning and reproducing 
a snow depth map at fine scales typically involves pattern recogni-
tion. Multiple-linear regression (Grünewald et al., 2013; Dvornikov 
et al., 2015), binary regression trees (Revuelto et al., 2014), random 
forests (Revuelto et al., 2020) or a convolutional neural network (Daudt 
et al., 2023) have been used to predict snow distribution patterns 
with varied performance (𝑅2 of 0.25–0.91). However, these statistical 
models typically require substantial training data from terrestrial or 
airborne sensors. Therefore, most models can hardly be transferred to 
other catchments or seasons (Grünewald et al., 2013; Revuelto et al., 
2020). Another category of statistical models capable of generalizing 
subgrid variability is commonly known as downscaling models. These 
models are designed to refine data from coarse, broad-scale grids to 
localized subgrid levels (Maraun, 2019). When applying these models 
retrospectively or into the future, an important assumption is made: the 
statistical relationships remain constant over time, a condition known 
as stationarity. Currently, there is a limited number of statistical down-
scaling models applied to snow depth (Helbig et al., 2024; Tryhorn and 
DeGaetano, 2013). The primary obstacles involve obtaining sufficient 
snow depth measurements for training and testing, meteorological 
forcing data in high resolution and accurately recognizing variability 
through informative features.

In light of these advancements and challenges, we present a method 
using ICESat-2 data in conjunction with high-resolution DEMs and 
ERA5-land climate reanalysis data, to effectively generate compre-
hensive snow depth maps at the hillslope scale. The objectives and 
workflow of this study are as follows:

1. Retrieving snow depth from ICESat-2 laser altimetry data across 
Norway.

2. Using this data to train a machine learning-based downscaling 
model that accommodates spatial and temporal variations of 
snow depth in mountain environments.

3. Applying local scaling calibration to downscaled snow depth for 
a validation area, and validating output snow depth maps at 
different scales with in-situ observations, gridded snow model 
products, and meteorological stations.

4. Discussing the challenges encountered in snow depth retrieval 
and snow depth downscaling.

The study area of Norway/Hardangervidda mountain plateau is 
chosen based on the availability of validation data. Still, the workflow is 
designed to be globally applicable where an accurate DEM and a proper 
calibration dataset are available. To retrieve snow depth measurements 
from ICESat-2 data, we used nationally and globally available DEMs 
acquired during snow-free conditions. Subsequently, we statistically 
downscaled ERA5 Land from its ∼9 km native resolution into 10 m 
using ICESat-2 snow depth measurements and a machine learning 
algorithm. To our knowledge, this study marks the first attempt to use 
ICESat-2 data to downscale ERA5 Land data, and the first attempt to 
propagate ICESat-2 snow depths in time and space using a statistical 
approach.
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Fig. 1. Map of the study area, Hardangervidda mountain plateau. A photo of the typical summer landscape is displayed at the top (a, looking south towards the Finse area and 
Hardangervidda. Photographer: Simon Filhol). The main panel (b) shows ICESat-2 tracks, validation data from the 2008/2009 snow survey and available weather stations. ICESat-2 
ATL08 snow-on data from October 2018 to October 2022 are displayed in red. The majority of tracks was surveyed only once and the few repeated tracks appear darker due to 
higher density. The blue ticks at the bottom highlight the ground tracks acquired during April (peak snow). The right panel shows the location of the validation area and the total 
number of available snow-on data segments for mainland Norway (c).
 

2. Study area and data setting

Norway, located on the western side of the Scandinavian Peninsula 
in northwestern Europe, spans latitudes from 57◦ 58′N to 71◦ 11′ 𝑁
and longitudes from 4◦ 40′ E to 30◦ 58′ E. The country features a 
diverse topography, ranging from lowland valleys to high mountains 
(highest peak at 2469 m a.s.l.). In winter, westerly winds bring mois-
ture, resulting in substantial snowfall from the coast to inland areas. 
This snow acts as a crucial reservoir for hydropower, emphasizing the 
importance of estimating snow mass in mountain environments.

Hardangervidda, our validation area, is the largest mountain plateau
in northern Europe, approximately 6500 km2. Its comparably flat ter-
rain is nevertheless covered by hills and troughs exposed to high winds 
and heavy snowfall (Fig.  1). The plateau predominantly lies above 1000 
meters above sea level (m a.s.l.), featuring a low alpine ecosystem with 
grass heaths, dwarf shrubs, and higher areas with bare rock or lichen 
marsh tundra. The eastern region is characterized by its open terrain 
with numerous lakes and streams. The western and southern areas, 
reach up to 1700 m a.s.l. and act as significant orographic barriers 
to the prevailing westerly wind flow. As moist air masses encounter 
this mountain range, they are lifted and cooled, leading to increased 
3 
precipitation on the windward slopes and a subsequent decrease of 
precipitation on the leeward side. Snow accumulation typically begins 
in mid to late September at higher elevations, peaking around late 
April. Mean annual precipitation ranges from 750 mm to as much as 
3000 mm over relatively short distances, with approximately 50%–60% 
of this annual precipitation falling as snow (Ketzler et al., 2021).

2.1. ICESat-2 ATL08 elevation data

Launched in September 2018, ICESat-2 is equipped with the Ad-
vanced Topographic Laser Altimeter System (ATLAS), which provides 
photon-counting lidar measurements at a global scale (Neuenschwan-
der and Pitts, 2019). ATLAS comprises three parallel beam pairs sep-
arated by 3.3 km on the ground. Each beam pair includes a strong 
and weak beam separated by 90 m. The ATLAS system emits a pulse 
every 0.7 m along the track, covering a circular footprint with a 
diameter of ∼15 m. At mid-latitudes, ICESat-2 ground tracks are gen-
erally not repeated but shifted for each overpass to maximize global 
spatial coverage. The ICESat-2 ATL08 product (level L3 A, version 5, 
Neuenschwander et al., 2021) offers elevation data in fixed segment 



Z. Liu et al. Cold Regions Science and Technology 239 (2025) 104580 
sizes of 100 meters along the ground track (Neuenschwander et al., 
2022). For each segment, there are five geolocations (subsegments) 
in 20 m intervals. Instead of using the mean elevation of the 100 m 
segment (h_te_mean, e.g., Enderlin et al., 2022), we used the subsegment 
height referring to best-fit terrain elevation at the midpoint location 
of the segment (h_te_best_fit_20m_2). The sub-segment heights are de-
termined through polynomial fitting to terrain photons with slope 
correction and weighting (Neuenschwander et al., 2022). Norway has 
a total of 3968 ATL08 data granules available for analysis from 14 
October 2018, to 12 October 2022. After removing invalid data, and 
excluding permanent ice and inland water, our dataset consists of 
13,197,376 segments, including 4,778,904 snow-free segments on land 
and 8,418,472 segments with snow cover over land. The coverage of 
snow-on segments is displayed in Fig.  1 with blue ticks representing the 
ground tracks from April of one of the four years (as ground tracks are 
not repeated).

2.2. Snow-off elevation data

As reference ground for snow depth retrieval, we employ the Nor-
wegian DTM1 elevation model (DTM1, Kartverket, 2022), a 1 m lidar-
based product acquired by Kartverket between 2016 and 2022. As a 
sensitivity test of DEM resolution, we also utilize the 10-meter resolu-
tion variant from the same data provider, DTM10 (Kartverket, 2022). 
To demonstrate the workflow’s applicability in areas without lidar-
based elevation products, we incorporate global DEMs such as Coper-
nicus GLO-30 (European Space Agency, 2021), hereafter referred to 
as COP30, and FABDEM (Hawker et al., 2022, Forest And Buildings 
Removed Copernicus DEM, hereafter referred to as FAB) as reference 
ground. COP30 is a 30-meter-resolution Digital Surface Model (DSM) 
acquired between December 2010 and January 2015 through synthetic 
aperture radar interferometry (TanDEM-X mission). FAB, a variant of 
COP30, eliminates buildings and trees using the random forest algo-
rithm, enhancing accuracy. FAB serves as a reference for comparison 
with COP30.

2.3. Large-scale reanalysis data

ERA5 Land hourly data (version 5) (Muñoz Sabater, 2021a) is 
an ECMWF (European Centre for Medium-Range Weather Forecasts) 
reanalysis product covering the period from 1950 to the present. It 
describes water and energy cycles over global land areas with over 
50 variables at a spatial resolution of approximately 9 km (Muñoz-
Sabater et al., 2021). This reanalysis data supplies the necessary forcing 
data for the downscaling model to generate sub-grid products while 
also accounting for input errors in the model (Günther et al., 2019; 
Pflug et al., 2021). ERA5 Land’s snow depth data (sde) represents 
the instantaneous snow thickness on the ground for the elevation of 
each grid cell, excluding snow on vegetation canopy (Muñoz Sabater, 
2021a). Additionally, the ERA5 Land monthly (Muñoz Sabater, 2021b) 
dataset contributes instantaneous wind fields (u10, v10) at 10 m above 
the land surface.

2.4. Validation data

Our validation methods include ALS surveys, seNorge snow model 
data, Sentinel-2 satellite imagery, and meteorological station data. 
These diverse sources offer both spatial and temporal contexts for 
evaluating model performance:

• The ALS survey: The survey by Melvold and Skaugen (2013) 
provides 2 m gridded snow depths data for two winters over 
Hardangervidda. The survey encompassed six flight lines apart in 
10 km intervals, each extending 80 km in an east–west direction 
with a crossline scanning width of 500 m (Fig.  1). The data 
were collected between 3–21 April 2008, 21–24 April 2009, and 
4 
21 September 2008 (snow-free reference). During the autumn 
collection period, the ground was in nearly bare condition except 
for few perennial snow patches (Melvold and Skaugen, 2013). 
The snow depth maps were regridded (averaged) to 10 m spatial 
resolution for this study. Figs.  5 and 6show snow depth data for 
April 2008 for parts of flight line b (indicated in Fig.  1).

• The seNorge data (www.senorge.no) employs a snow model that 
predicts snow depth based on interpolated precipitation and tem-
perature station observations (seNorge2018 v23.09) (Saloranta, 
2012, 2016). It offers daily snow depth maps at a 1 km ×1 km grid 
resolution and is available via the public archive service Thredds1 
of the Norwegian Meteorological Institute (MET Norway). We 
aggregated the daily snow depth from seNorge into monthly 
average values.

• Meteorological stations: this study compared the snow depth time 
series with three available meteorological stations in the region 
(Fig.  1). The weather station Sandhaug is located 50 m north of 
one of the ALS flight lines at an elevation of 1250 m above sea 
level (a.s.l.). The other station Mogen (954 m a.s.l.) is situated 
directly along one of the flight line. Additionally, Haukeliseter 
(990 m a.s.l.) is positioned between two flight lines. Monthly 
mean snow depth data were retrieved from MET Norway’s Frost 
API2. Due to harsh observing conditions in our validation area, all 
station observations carry a median confidence level indicated by 
a quality flag of 2.

• Sentinel-2 satellite imagery (L2 A; Sentinel-2, 2022) was used for 
visual data quality checks and validation of the presence/absence 
of snow in the Lake Møsvatn area (Fig.  1).

2.5. Calibration data

For calibration purposes, we identified 7103 points where ICESat-2 
tracks overlapped with ALS strips collected in April 2008 (Fig.  1). These 
points, distributed across the entire study area, were selected as control 
points to represent the study area while the rest of the area remains 
unseen to the downscaling model. The outputs from the downscaling 
model are then calibrated against these selected control points to ensure 
accuracy.

3. Methodology

3.1. ICESat-2 snow depth retrieval

Snow depth (𝑆𝐷𝐼𝑆2) was derived from ICESat-2 high-resolution 
elevation measurements through an elevation differencing workflow. 
ICESat-2 ATL08 data were categorized into snow-on (𝐼𝑆𝑠𝑛𝑜𝑤) and snow-
free segments based on attributes and flags present in the ATL08 
data: the snow mask (segment_snowcover) from the National Oceanic 
and Atmospheric Administration (NOAA) daily snow cover product 
(Neuenschwander et al., 2022), as well as the (brightness_flag). Snow-
free segments were used for DEM co-registration and subsequent bias 
correction (Fig.  2, see 3.1.1, 3.1.2). The correction involved estimat-
ing the discrepancy (𝛥ℎ) between the reference DEM (𝐷𝐸𝑀𝑟𝑒𝑓 ) and 
ICESat-2 snow-free measurements:
𝑆𝐷𝐼𝑆2 = 𝐼𝑆𝑠𝑛𝑜𝑤 − (𝐷𝐸𝑀𝑟𝑒𝑓 + 𝛥ℎ)

Moving terrain such as water surfaces and permanent ice were excluded 
from the analysis using the segment_landcover reference mask from the 
ATL08 product (based on the Copernicus Global Land Cover dataset at 
100-meter spatial resolution, Neuenschwander et al., 2022).

1 MET Norway’s Thredds API: https://thredds.met.no. Last access: 11 Sep 
2023.

2 Frost API, MET Norway’s archive of historical weather and climate data: 
https://frost.met.no. Last access: 11 Sep 2023.

http://www.senorge.no/
https://thredds.met.no
https://frost.met.no
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Fig. 2. Flow chart of the snow depth (SD) retrieval and downscaling-calibration scheme. First, snow depth is extracted by elevation differencing. This step includes co-registration 
and bias correction of the DEM (blue box). Consequently, a tree-structure-based regressor for downscaling is trained and implemented to predict local variability of snow depth 
in any location and at any time (green box). The resulting snow depth map time series are validated over time and in space (orange box). For full definitions of acronyms, see 
Section 3. Satellite graphics source: NASA.gov.
The snow depth retrieved at each point (Easting, Northing, time) 
provides spatially and temporally incomplete information on snow 
dynamics. To overcome this, we obtained daily maximum snow depth 
from ERA5 Land and interpolated linearly in space for each desired 
point (E, N, t). The ICESat-2 snow depth is then subtracted from the 
interpolated ERA5 Land snow depth to create a localized dependent 
variable, denoted as subgrid variability (𝑌 ) (Fig.  2). This variable repre-
sents the deviation from the aggregated mean snow depth at each point, 
used in the subsequent downscaling model (Section 3.2). The downscal-
ing model predicts this subgrid variability, applying it to the ERA5 Land 
monthly snow depth data to generate snow depth time series. Due to 
the inherent nature of the downscaling model, raw outputs are biased 
towards average values while extreme values are underrepresented (i.e.
conditional bias). Thus, a calibration step (Section 3.2.3) was added 
to better represent the full snow depth distribution. Data processing 
was done in Python with custom scripts that are available in a public 
GitHub repository (see Data availability). The processing relies on the 
libraries Xarray (Hoyer and Hamman, 2017) and Pandas (The pandas 
development team, 2024). The retrieved snow depth for Norway, span-
ning from October 2018 to October 2022 is available on Zenodo (DOI: 
https://doi.org/10.5281/zenodo.10048875).
5 
3.1.1. Co-registration
Co-registration is a crucial step to align elevation datasets, with 

ICESat-2 snow-free data serving as a highly precise and spatially con-
sistent reference. We used a computationally efficient gradient descent-
based co-registration algorithm (for details see Supplementary Section 
A). The process, facilitated by the open-source xDEM tool (Xdem con-
tributors, 2021), was applied to each DEM tile, ensuring accurate 
alignment across all datasets.

3.1.2. Bias correction
Bias correction estimates vertical discrepancies (𝛥ℎ) between DEMs 

and ICESat-2 data. Given that DEMs are often patched together from 
multiple datasets and various sensors, captured in different seasons and 
at different resolutions, they must be cautiously used as a reference 
ground surface (Hugonnet et al., 2022). Magruder et al. (2021) used 
ICESat-2 elevations to correct DEMs, taking canopy and slope into 
account. On the other hand, Tian and Shan (2021) and Enderlin et al. 
(2022) found that ICESat-2 ATL08 data underestimates terrain height 
when compared to the reference DEMs over steep terrain, and thus 
proposed a slope-dependent bias correction. Our study does not assert 
which dataset represents ground truth most accurately but focuses on 
quantifying the discrepancies so that we can exclude it from snow depth 

https://doi.org/10.5281/zenodo.10048875
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elevation differencing. Essentially, estimating the discrepancies (𝛥ℎ)
between two datasets is a regression problem that can be described with 
physiographic parameters, vegetation conditions, and quality metrics 
from ICESat-2. We employ the XGBoost3 regression model (Chen and 
Guestrin, 2016), a gradient-boosted decision tree (GBDT) algorithm. 
The regression model trained based on ICESat-2 snow-free measure-
ments, is later used to predict elevation discrepancies (𝛥ℎ) for all 
other DEM grid cells where ICESat-2 snow-free data are not avail-
able (Supplementary Section B). This results in bias-corrected snow 
depth measurements for all ICESat-2 snow-on data points. The bias 
correction successfully removed a significant negative skewness in the 
elevation difference histograms for snow-free data points (Figure S.4). 
In addition, considerable dependence on first and second-order DEM 
derivatives (slope and curvature) was detected and removed. After bias 
correction, NMAD values between ICESat-2 snow-free data points and 
DEM datasets are reduced from 0.66 m to 0.48 m (DTM1), and from 
1.87 m to less than 0.62 m (FAB) (Figure S.4).

3.2. Snow depth downscaling-calibration

A second XGBoost regression model is employed to downscale 
ERA5 Land snow depths. XGBoost has demonstrated its effectiveness in 
downscaling tasks, such as total water storage anomaly from satellite 
gravimeter (Ali et al., 2023), precipitation (Zhu et al., 2023) or wind 
speed (Hu et al., 2023). We train the XGBoost regression model on 
(bias-corrected) ICESat-2 snow depth measurements and use a com-
prehensive set of topo-climatic features, including snow depth from 
ERA5 Land (sde_era), east, north, elevation (h_te_best_fit), slope, aspect, 
topographic position index (TPI, Weiss 2001; see Section 3.2.1), curva-
ture, planform curvature (planc), profile curvature (profc), cumulative 
wind-aspect factor (𝑊𝑢𝑓 , see Section 3.2.2) and month of the year. 
These predictors offer valuable information into the physical driver 
of snowpack dynamics. For instance, slope and curvatures are basic 
metrics governing snow accumulation (Filhol and Sturm, 2019). We 
compute these terrain attributes using xDEM (Xdem contributors, 2021) 
based on DTM10 with Zevenbergen & Thorne algorithm (Zevenbergen 
and Thorne, 1987) at 10 m resolution, consistent with the model’s 
output resolution. The time-varying wind fields are extracted from 
ERA5 Land monthly data (see Section 3.2.2). We assume ERA5 land 
products to be stationary, allowing us to apply the downscaling model 
trained on snow observations from 2018 to 2022 to other periods.

The XGBoost regression model uses decision trees in parallel struc-
ture to capture nonlinear relationships between snow depth subgrid 
variability and topo-climatic features. During the training, the structure 
and splits of the trees are guided by the goal of minimizing the 
prediction error on given loss functions. Two types of loss functions are 
employed in separate model versions with slightly different purposes: 
(1) Square error (reg:squareerror) as a loss function to estimate the 
conditional mean of the target variable, this was the main method 
used to generate the spatially distributed maps, and (2) Quantile re-
gression (reg:quantileloss) to give probabilistic predictions, such as 
Q50 (median), Q25 and Q75, which are used for point-based down-
scaling at weather station locations, to gain insights into the uncer-
tainties of downscaling over time by validating predictions against
in-situ observation. The adoption of quantile regression is inspired by its 
successful application in probabilistic forecasting (Meinshausen, 2006; 
Zhang et al., 2018), for which no preknowledge of the target variable 
distribution(e.g. a normal distribution) is required while being robust 
to outliers. Quantile regression is therefore an ideal choice for our 
downscaling task as it captures the full range of possible snow depth 
values (e.g. extreme values) under varying climatic conditions.

3 The XGBoost (version 2.0.0) library can be accessed at https://xgboost.
readthedocs.io/
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3.2.1. Topographic position index (TPI)
The TPI is a metric used to access slope position and classify 

various landforms. It quantifies the difference between the elevation 
of a central pixel and the average elevation of its neighboring pixels 
(3 × 3 pixels). A TPI value of zero or near zero indicates a flat or 
nearly continuous slope. Positive TPI values suggest that the central 
pixel is significantly higher than the surrounding areas, forming a 
ridge or hill. Inversely, negative TPI values indicate that the central 
pixel is notably lower than its neighboring areas, signifying a valley. 
TPI has proven effective in predicting snow distribution in alpine 
environments (Revuelto et al., 2014; Cristea et al., 2017). To represent 
landforms at different scales, we used two additional indices: tpi_9 
(calculated in 9 × 9-pixel windows, equivalent to 90 m × 90 m) and 
tpi_27 (270 m × 270 m).

3.2.2. Cumulative wind-aspect factor
The wind-aspect factor (𝑊𝑓 ) (Bennett et al., 2022; Dvornikov et al., 

2015) serves as a proxy for snow accumulation and erosion on topo-
graphic obstacles. It assigns positive values on the leeward side and 
negative values on the windward side of these features. We formulated 
the relationship between wind and aspect by a cosine function that 
ranges from −1 to 1 for any prevailing direction (see Fig.  3):
𝑊𝑓 = −𝑐𝑜𝑠(𝑎𝑠𝑝𝑒𝑐𝑡 − 𝑑𝑖𝑟𝑤𝑖𝑛𝑑 )

where 𝑑𝑖𝑟𝑤𝑖𝑛𝑑 is the direction of the wind origin with northerly wind 
(blowing from north to south) referred to as 0◦. This study further 
divided 𝑊𝑓  into leeward 𝑊𝑓𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒  and windward factors 𝑊𝑓𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 , mul-
tiplied by wind speed to the power of three (Fig.  3 b) to capture the 
cumulative effect of wind redistribution for each water year period.
𝑊𝑢𝑓𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 =

∑

𝑊𝑓𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑢
3
𝑤𝑖𝑛𝑑

𝑊𝑢𝑓𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 =
∑

𝑊𝑓𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑢
3
𝑤𝑖𝑛𝑑

where 𝑢𝑤𝑖𝑛𝑑 is the monthly average wind speed from ERA5 Land, 
linearly interpolated to 10 meters resolution. The accumulation begins 
in September from zero until the next August when the value reaches its 
maximum. The value does not accumulate when the monthly average 
snow depth falls below 0.1 m during the annual cycle.

3.2.3. Calibration
In our study, the XGBoost downscaling model is tasked with pre-

dicting snow depth under a variety of conditions. We observed that 
XGBoost tends to produce a conservative estimate close to the mean, 
likely because the feature set does not consistently explain what critical 
conditions lead to extreme snow depths. This conservative tendency is a 
natural outcome of the model’s objective to minimize overall prediction 
error, often resulting in a distribution that skews towards average 
conditions and under-represents the extremes (known as scaling bias, 
further discussed in Section 5.2). The calibration step scales the mod-
eled snow depth values so that their distribution matches the locally 
observed snow depth distribution, using quantile mapping (Cannon 
et al., 2015; Li et al., 2010). Thereby, while preserving the relative 
snow depth predictions of the downscaling model, the calibration 
removes the scaling bias for each specified quantile by a scaling factor 
calculated from the control points, ensuring a good representation of 
local snow depth distribution:
𝑥𝑎𝑑𝑗 = 𝐹−1

𝑂 (𝐹𝑀 (𝑥))

𝛥 =
𝑥𝑎𝑑𝑗
𝑥

Here, 𝑥𝑎𝑑𝑗 denotes the calibrated prediction. For a given percentage, 
as determined by the cumulative distribution function (CDF) of the 
XGBoost downscaling model output 𝐹𝑀 (𝑥) and that of the observational 
control points 𝐹𝑂(𝑥𝑎𝑑𝑗 ), the discrepancy between two distribution’s 
quantiles is encapsulated by the scaling factor (𝛥) for a given ratio.

https://xgboost.readthedocs.io/
https://xgboost.readthedocs.io/
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Fig. 3. Quantifying the relationship between wind, aspect and snow redistribution. (a) The prevailing wind, e.g. from SE, results in a negative value on the windward side (snow 
erosion, 𝑊𝑢𝑓𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 , brown) and positive values on the lee side (snow deposition, 𝑊𝑢𝑓𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 , blue). Eight cardinal directions are plotted but the function works on any wind direction. 
(b) Research suggests that as wind speed increases, the transport rate increases exponentially with a power of 3 (adapted from Li et al. 2018).
3.3. Model interpretation and assessment

To interpret the contribution of topo-climatic features in our tree-
based models, we employed the SHAP values (Lundberg et al., 2020), 
a metric derived from game theory facilitating the understanding of 
the relative contribution of the model predictors (a.k.a. features). The 
SHAP value corresponds to the contributions of each feature to individ-
ual predictions. A feature can either play for or against the prediction 
(positive or negative SHAP value), and the magnitude of its SHAP 
value shows the significance of the feature role. The sum of all these 
contributions, plus the base prediction, provides the final prediction.

For fair comparisons, we aggregated all high-resolution valida-
tion datasets to the same resolutions. Model validation was conducted 
across two different scales. At the micro to site scale (respectively 100 
to 10 m), we captured snow distribution over typical micro-terrain fea-
tures such as hills and gullies using the original model output resolution 
of 10 m. At the mesoscale, we aggregated data into a 100 m × 500 m 
grid, reflecting the 500 m width of the ALS survey swath, with 100 m 
intervals in the transect direction to obtain a good characterization 
of snow depth variability across different aspects of hills and ridges. 
Successful prediction would result in a (near-) perfect data match in 
probability distribution and ranking correlation. To quantify the down-
scaling performance, we employ four key statistical metrics. RMSE and 
𝑅2 scores evaluate the overall accuracy and fitness of the model. 𝑅2
score is computed using the standard implementation of the Python 
library Scikit-learn:

𝑅2 = 1 −
SSres
SStotal

where SSres represents the variation in the data that the fitted model 
does not explain, expressed by the sum of squared residuals between 
the model output and measured data, and SStotal is the total variation in 
the data, i.e., the sum of squared residuals with regard to the mean. The 
𝑅2 value typically ranges from 1 (perfect fit) to 0, but can be negative 
if the model is evaluated on different data than used for training (as 
in our case) and for nonlinear models typically used with the machine 
learning approach (e.g. XGBoost, as used in this study). A negative 𝑅2
value means that the model performs worse than a constant function 
that always predicts the mean. As R2 is sensitive to the presence of 
bias, Spearman’s rank correlation coefficient (𝜌) is used as a fidelity 
metric, with a high 𝜌 indicating good similarity in spatial distribution. 
The Kolmogorov–Smirnov D statistic (KSD) quantifies the degree of 
probability distribution matching, with KSD = 0 indicating a perfect 
match. To compare the patchy snow distribution during melt-out season 
with binary snow cover data from satellite imagery, we use the area 
under curve (AUC) and Matthews correlation coefficient (MCC). For 
these metrics, a value of 1 indicates a perfect match, whereas values 
of 0.5 (AUC) and 0 (MCC) correspond to random guessing.

Additionally, we used variograms to quantify the model’s ability to 
capture the spatial heterogeneity of snow depth. The semi-variance (𝛾) 
7 
is a measure of spatial variability, calculated for pairs of observations 
as half the average squared difference between values separated by a 
specific lag distance (𝑙) (Oliver and Webster, 2014):

𝛾(𝑙) = 1
2𝑁(𝑙)

𝑁(𝑙)
∑

𝑖=1
(𝑧(𝑥𝑖) − 𝑧(𝑥𝑖 + 𝑙))2

where 𝑧(𝑥𝑖) represents the snow depth at location 𝑥𝑖. The variogram 
indicates the rate at which correlation decreased with distance. By 
fitting variograms to the sum of the spherical model and Gaussian 
model for short and long ranges, respectively (following the method 
of Rolstad et al., 2009; Hugonnet et al., 2022), we identify spatial 
correlation of snow distribution at different scales. The variograms are 
computed using the xDEM tool (Xdem contributors, 2021).

4. Results

4.1. Mesoscale snow depth variability

Fig.  4 shows the snow depth maps for April 2008. Model input data, 
i.e., linearly interpolated snow depth from ERA5 Land (a), only rep-
resents large-scale variability. After downscaling, the fine-scale snow 
depth variability aligns with the topography both at the microscale 
(10 m, b) and aggregated to 1 km (d). In comparison, seNorge data 
(c) at the same spatial resolution appear smoother with less spatial 
variability and overestimate snow depth in the western mountains. The 
differences between the two data sets are smaller for April 2009 where 
there was generally less snow in Southern Norway (see Supplementary 
Section E). A comparison of April 2008 snow depths at mesoscale for 
flight line b is shown as a transect in Fig.  5. The ALS snow survey, 
downscaled output (after calibration), seNorge, ERA5 Land data and 
elevation are aggregated (averaged) to a resolution of 100 m × 500 m, 
owing the ALS survey’s 500 m transect width. All datasets follow a 
decreasing trend from snow depths exceeding 6 m to the West (close 
to the coast) to around 2 m to the East (far from the coast).

The downscaled snow depths reveal impressive details in snow 
depth spatial variability at the mesoscale that corresponds well to the 
observed snow depth magnitude and spatial variability captured by the 
ALS snow survey. The goodness of fit is similar for the other flight strips 
(Figures S.7, S.8). Across the six flight lines, the calibrated downscaling 
models score an 𝑅2 of 0.81 and an RMSE of 0.53–0.57 m (Table  1). We 
achieve nearly as good performance at mesoscale when using the global 
DEMs COP30 and FAB for ICESat-2 snow depth sample retrieval rather 
than the Norwegian high-resolution datasets DTM1 and DTM10 (Figure 
S.7). There are only minimal differences between output snow depth 
maps and we did not detect any systematic biases, no matter which 
DEM was used for snow depth sample retrieval. The results are similarly 
good for the 2009 ALS snow survey (Figure S.8), with slightly lower 
RMSE values of 0.50 m to 0.55 m that can be attributed to generally 
lower snow depths in 2009.
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Fig. 4. Spatial distribution of snow depth in the Hardangervidda area, April 2008. (a) Downscaling model input, linearly interpolated snow depth from ERA5 Land. (b) Downscaled 
snow depth output at 10 m resolution. (c) seNorge snow depth at 1 km resolution. (d) Downscaled snow depth aggregated to 1 km resolution. Map coordinates are in meters 
UTM 33N.
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In comparison, 𝑅2 values of the (coarser-resolution) seNorge model 
data compared to the ALS survey are lower (0.49 and 0.65) and 
RMSE values higher (1.12 m and 0.60 m). The seNorge model shows 
little spatial variability, is less sensitive to topographic features and 
orographic barriers, and shows about 40% overestimation on the west-
ern mountain ridges but matches ALS data in the East. Melvold and 
Skaugen (2013) attributed the overestimation of the seNorge model to 
its strong reliance on weather stations located in low-elevation areas 
not representative for high mountains.

Upon closer inspection, ALS ground truth data exhibit many spikes 
on east-facing slopes (Fig.  5), likely resulting from wind redistribution 
and gravity processes. Our downscaling model acknowledges the im-
portance of the aspect and wind-driven snow accumulation factors (see 
also Fig.  9 c,g) but does not always reproduce corresponding snow 
distribution in the correct places. ERA5 land snow depth input data 
exhibit a north-south systematic bias, shifting from overestimation to 
underestimation relative to the ALS data (Fig.  9 d). The model over-
corrects snow depths in the Eastern part of flight line b, resulting in 
snow depth underestimation compared to the ALS survey.

4.2. Microscale snow depth variability

Fig.  6 compares the 2008 ALS snow survey with the downscaled 
snow depth at a 10-meter resolution. The area shown, located in the 
western part of flight line 2 (indicated in Fig.  1), exhibits distinct 
microscale landforms, with sheltered depressions hosting thick snow 
patches (>8 m) and wind-exposed hilltops featuring thin snow covers 
(close to 0 m). This area was also shown in Melvold and Skaugen 
(2013, Figure 3) to address the effect of spatial resolution on snow 
depth representation. The terrain features align with the spatial lag that 
exhibits significant autocorrelation of snow depth in the variogram in 
Fig.  10(e), corresponding to ca. 100 m and 1.3 km.

The transect line (marked in white) in the downscaled output across 
this varied terrain visually captures most of the observed pattern very 
r

8 
Table 1
Statistical comparison of snow depth estimates from different methods (downscaled 
output with snow retrievals based on different DEMs, seNorge, and ERA5 Land) against 
ALS snow survey data for all six flight lines (a–f) combined, for the years 2008 and 
2009, respectively. 𝑅2, KSD and Spearmans’ 𝜌 are unit-less, RMSE is in m.
 Dataset April 2008 April 2009

𝑅2 KSD 𝜌 RMSE 𝑅2 KSD 𝜌 RMSE 
DTM1 0.81 0.09 0.88 0.53 0.78 0.07 0.87 0.50  
DTM10 0.82 0.12 0.88 0.56 0.79 0.08 0.88 0.513 
COP30 0.80 0.10 0.88 0.57 0.75 0.07 0.84 0.554 
FAB 0.81 0.11 0.89 0.56 0.77 0.07 0.86 0.54  
SeNorge 0.49 0.21 0.84 1.12 0.65 0.13 0.86 0.60  
ERA5 Land −0.79 0.27 0.71 0.82 −0.34 0.24 0.72 0.68  

ell. Extreme deep/shallow snow depths tend to be biased towards av-
rage values, but less so than if scaling calibration is not applied (Figure 
.6). While Spearman’s 𝜌 of 0.77 indicates a strong rank correlation, 
he relatively low 𝑅2 value of 0.34 and high RMSE of 1.33 m (panel 
) suggests a reduced statistical agreement compared to the mesoscale 
nalyzes. The KSD of 0.12 for the transect line and a mean deviation 
f 0.28 m for the difference map indicate that the scaling calibration 
f the downscaled snow depths, a single function applied to the entire 
tudy area and not the shown sub-region specifically, does not fully 
eproduce extreme values and results in a slight overestimation of 
verage snow depths in this sub-region. The residual differences appear 
o be correlated with terrain features and match areas with remaining 
now patches in the DTM1, which we detect by comparing the DTM1 
ith the ALS snow-off data (Figure S.6 e).

.3. Temporal variability of snow depth

The downscaling model is also able to propagate information in time 
ather than only space. For this purpose, we used quantile regression 
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Fig. 5. Snow depth profile of flight line b across Hardangervidda as shown in Fig.  1). Data is shown for April 2008 at mesoscale, i.e. averaged to 100 m × 500 m (flight strip 
width) cells along the flight strip length of 80 km. Model outputs of the different DEMs are nearly identical. The map strips illustrate snow depth from ERA5 Land, seNorge, ALS 
snow survey and downscaled model output using the DTM1 for the marked section of the datasets, before aggregation.
Fig. 6. Microscale (10 m) snow depth comparison in the west Hardangervidda, April 2008. The validated area is located along flight line b, as shown in the study area map in 
Fig.  1 and mesoscale snow depth profile in Fig.  5. (a) Transect line, marked white in panels b/c, (b) ALS snow survey validation strip with significant snow depth variations, 
(c) downscaled snow depth, (d) differences between the ALS data and model output (background: DTM1 DEM). Common horizontal scales of landforms (95 m and 1.3 km) are 
symbolized by black arrows in panel a.
for the downscaling model. The uncalibrated model output is shown 
in Fig.  7, to enable analysis of the local bias and its evolution over 
time. Time series data are shown for the data cell (10 m pixel size) 
corresponding to the locations of three stations within the Hardan-
gervidda area: Sandhaug (a), Mogen (b), and Haukeliseter (c). The 
predicted interquartile range Q25–Q75 (IQR, shown in yellow) provides 
an estimate of snow depth predictions uncertainty. Q50 (blue line) 
represents the median prediction. Visually, Q75 shows the best match 
with the weather station data whereas input ERA5 data over- and Q50 
model data underestimate measured snow depths (Table  2). (𝑅2 of 
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0.71, 0.60, 0.76) The downscaled model (both Q50 and Q75) generally 
performs similarly to the original ERA5 Land data across all stations. 
𝑅2 values range from −0.43 (Q50, Mogen) to 0.86 (Q50, Haukeliseter), 
and do not describe performance well due to significant biases at the 
individual site level. While the (uncalibrated) model exhibits bias in 
predicting the absolute snow depths, the high Spearman’s 𝜌 (0.91 to 
0.95, ERA5: 0.92 to 0.96) across all three stations suggests that the 
downscaling successfully maintains the relative ordering of snow depth 
time series. The better agreement of Q75 with observations (compared 
to Q50) could reflect either (1) a systematic  25% underestimation bias 
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Fig. 7. Time-series validation of snow depth for three weather stations Sandhaug (a), Mogen (b), and Haukeliseter (c). Blue Dot: measured monthly mean and minimum/maximum 
values (light blue), Blue line: median downscaled snow depth (Q50) and interquartile range (IQR) for 25th–75th quantiles (yellow). Note: Haukeliseter and Sandhaug data availability 
starts from 2015 and 2014, respectively, and some years have missing data and incorrect measurements.
Table 2
Statistical comparison of monthly snow depth estimates from different methods (Downscaled output and ERA5 Land) against weather station 
snow depth. RMSE is in meters.
 Station Model — Q50 Model — Q75 ERA5 Land
 R2 KSD 𝜌 RMSE R2 KSD 𝜌 RMSE R2 KSD 𝜌 RMSE 
 Sandhaug 0.29 0.20 0.94 0.39 0.71 0.17 0.95 0.29 0.73 0.21 0.96 0.44  
 Mogen −0.43 0.22 0.91 0.28 0.60 0.19 0.91 0.23 0.47 0.31 0.92 0.46  
 Haukeliseter 0.86 0.10 0.94 0.26 0.76 0.23 0.94 0.38 0.37 0.36 0.94 0.79  
in the model, or (2) the local station measurements corresponding to 
the Q75 percentile of the model’s predictions for similar conditions. 
Bias is primarily observed for high snow depth values during the peak 
snow season whereas the snow-free season is captured accurately. The 
peak snow bias is different for the three sites but has a consistent 
magnitude over time at each site. There are no indications of a better 
fit for the training period (late 2018 to late 2022) compared to earlier 
years. This suggests that the bias could be reduced or removed entirely 
by a scaling calibration such as applied to the maps resulting from the 
spatial propagation presented above.

4.4. Validating snow occurrence

Fig.  8 provides a visual comparison between the downscaling model 
output and Sentinel-2 imagery for June 2020 in the lake Møsvatn 
area (Fig.  1). The figure shows the model’s accuracy in predicting the 
occurrence of snow during the rapid melt period. The downscaled snow 
map from our model visually shows a high level of agreement with 
the satellite snow extent on June 24, 2020, capturing the remaining 
snow patches aligning with topographical features (Fig.  8c, d). Panel 
(e) and (f) show that east-facing slopes retain more snow compared 
to west-facing slopes, a pattern that our model successfully captures. 
Closer inspection reveals that the model retains a thin snow layer in 
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most areas as well as minor discrepancies in snow distribution. Some 
of these differences can be explained by the binary nature of Sentinel-2 
snow cover and a temporal mismatch, with the Sentinel-2 image taken 
on a specific day and the model output representing a monthly mean 
snow depth for June. In particular, the model tends to systematically 
overestimate snow coverage for specific terrain (indicated by the white 
circle), such as steep slopes, and underestimates snow coverage for cer-
tain terrain features (white circle). To express the match quantitatively, 
we converted the model output to snow occurrence/probability using 
a threshold of 0.3 m for full snow cover, and the Sentinel-2 data to a 
binary reference by computing the Normalized Snow Difference Index 
(using a threshold of 0.42, as recommended by the Sentinel-2 data 
provider Copernicus). For the area shown in Fig.  8 (extent of panels 
a, b), we receive a Matthews Correlation Coefficient of 0.35 and an 
Area Under the Curve (AUC) value of 0.76, both indicating acceptable 
model performance. For a dynamic view of snow occurrence variability, 
please refer to the video in the supplementary materials.

4.5. SHAP analysis and variogram assessment

The most informative relationships between input features and 
predicted subgrid variability are listed in descending order. Elevation 
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Fig. 8. Validation of snow occurrence using Sentinel-2 imagery for the Lake Møsvatn area (annotated in Fig.  1). (a) modeled snow cover distribution for June 2020, (b) Sentinel-2 
image on June 24th, 2020. Panels (c) and (d) show local discrepancies in snow distribution, (e) and (f) show correctly modeled snow retention on east-facing versus west-facing 
slopes. The overestimation on steep slopes and underestimation in flatter terrain are annotated with white circles.

Fig. 9. SHAP interpretation for the downscaling model. Panel (a) ranks features by their impact on snow depth prediction. Subsequent panels (b–g) depict SHAP dependence 
plots, illustrating how each feature influences model predictions for the ALS survey areas in the Hardangervidda area. A high SHAP value positively influences predicted snow 
depths, and a low SHAP value causes lower snow depth predictions. Each dot represents an individual 10 m grid cell, and the light grey histograms on the 𝑥-axis show the relative 
distributions of feature values.
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Fig. 10. Spatial correlation from semivariograms based on six ALS validation strips 
(2008) and downscaling model outputs at 10 m resolution. Note the limited capture of 
variance in the transverse direction due to the ALS strips’ constrained width (500 m). 
The vertical bar on crosses represents one standard deviation where data are sufficient 
to compute the statistic.

(h_te_best_fit) emerges as the most significant factor, with higher el-
evations positively influencing subgrid snow depth (Fig.  9a). Snow 
depth from ERA5 Land also has a high impact, however, both very 
shallow snow depth and deep localized snow depth exist (Fig.  9a, 
b) where (sde_era) is high, owing to the low spatial resolution of 
the data not capturing the variable topography. Notably, relatively 
deeper snow (indicated by high SHAP values in Fig.  9b, c) is estimated 
by the downscaling model in concave terrain (negative TPI) with an 
east-facing slope. In contrast, thinner snow (lower SHAP values) is 
associated with convex (positive TPI) and west-facing slopes. The model 
estimates higher snow depths for the two northernmost ALS flight strips 
of the study area than the southern part (Figs.  9d, 5). The positive 
cumulative wind aspect factor (wuf_positive) contributes to preferential 
snow accumulation and shows a stronger influence than the negative 
wind aspect factor (wf_negative, Fig.  9f, g). Most wind aspect factor 
data points have small values indicative of low wind speeds. These 
show much variability in their SHAP value, indicating unexplainable 
variance. The SHAP method cannot distinguish the contributions from 
correlated features such as the apparent importance and positive in-
fluence of slope, which might partly be caused by correlated features 
such as elevation and curvature. The phenomenon of having less snow 
on very steep slopes (e.g. >50◦) is not observed (Fig.  9a), rather, the 
model associates high slopes with a positive SHAP value that indicates 
greater snow depths.

The empirical semivariogram in Fig.  10 shows that the downscaling 
models based on all DEM versions adequately capture the spatial vari-
ability and autocorrelation of snow depths in the Hardangervidda area, 
but suggests stronger spatial dependence at short ranges for ALS data 
than downscaled snow depths (ca. 80% and 50% of the total variance 
at 100 m lag). The distance of ca.  100 m corresponds to the wavelength 
of depression features commonly observed in the area (Fig.  6). Overall, 
the downscaling model exhibits ca. 20% less variance than the ALS 
data. At a distance of ca. 1300 m, the semi-variance for all datasets 
approaches the sill. This distance aligns closely with the typical size of 
hillslopes in this region, as depicted in Fig.  6. The interpolated SeNorge 
product, based on precipitation gradients, temperature–elevation lapse-
rates and disregarding wind processes, has a resolution too coarse to 
resolve the hillslope-scale snow depth variability.

5. Discussion

5.1. Bias in elevation datasets

This study shows that ICESat2 ATL08 data is not just capable 
to retrieve snow depths, thus confirming previous findings by other 
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authors (Deschamps-Berger et al., 2023; Enderlin et al., 2022; Tian 
and Shan, 2021; Besso et al., 2024), while also improving snow depth 
retrieval through co-registeration and rectification of DEMs. Previous 
studies have in common that retrieved snow depths are biased by 
remaining discrepancies and errors in the DEM/ICESat-2 data such as a 
slope-dependent bias. The bias correction introduced in our workflow 
can reduce errors that depend on first and second-order derivatives 
(slope/curvature). Several studies pointed to ICESat-2 as the primary 
source of this bias, as ICESat-2 ATL08 data tends to underestimate 
surface height under certain conditions. Moudrý et al. (2022) attributed 
the error to the presence of clouds and corresponding increasing atmo-
spheric scattering effects leading to an increased photon travel time 
and, consequently, underestimating terrain height. Furthermore, the 
100 m segment length of ATL08 (e.g. h_te_mean used by Enderlin 
et al. 2022) is considered insufficient for accurately mapping steep and 
rugged terrain Besso et al. (2024). Therefore, Enderlin et al. (2022) 
recommended using ATL08 only in areas with relatively low slopes 
and sparse vegetation cover. We also observed that bias is higher in 
the Hardangervidda area than in other, flatter parts of Norway, such 
as Finnmark (not shown in this paper). In our data sample, a large 
number of negative snow depth measurements were present before 
bias correction. Directly excluding these negative snow depths (without 
further bias correction) would result in unbalanced training samples. 
A correction solely based on the slope, as proposed by Enderlin et al. 
(2022) and Tian and Shan (2021), did not remove bias sufficiently for 
the ICESat-2 measurements to be used as model input for the downscal-
ing. We find resolution-dependent biasing effects for the tested DEMs 
with regard to curvature that are essential to correct for accurate snow 
depth retrieval (Supplementary Section B). For Norway, we found that 
the spatial resolution of the ATL08 data is better than COP30 (30 m) 
when using h_te_best_fit elevation values fitted to the middle 20 m of 
the 100-m-ATL08 segment (Supplementary Section B).

Also the snow-off DEMs hold potential limitations for ICESat-2-
derived snow depths in certain terrain, especially high mountain or 
Arctic areas where the snow-free season is short and some snow patches 
remain during summer. Typically, some snow at the highest elevations 
is of little concern for general-purpose DEM data distributors who need 
to balance requirements of numerous DEM applications. The DTM1 
was acquired during June/July according to metadata, under summer 
conditions. From comparison with ALS snow-off data (Figure S.6), we 
find that the Hardangervidda area was not entirely snow-free for any 
of the four tested DEMs nor the Arctic DEM (Porter et al., 2022). 
Remaining snow on the supposedly snow-free reference results in an 
underestimation of snow depth in parts of these areas, with typical 
topographic signatures (e.g., shaded depressions). Additionally, in areas 
with long snow cover duration there are fewer snow-free ICESat-2 
segments available. Consequently, the bias correction introduced in 
this study may not be able to correctly capture and remove this bias, 
leading to underestimation of high snow depths. When comparing our 
downscaled snow depths with the ALS validation data, we find that 
on the microscale, the residuals are highly associated with a preferen-
tial snow deposition pattern. The systematic underestimation of deep 
snow depths is even more prominent in the downscaled output if the 
calibration step is not applied (Figures S.8, S.9). The bias correction 
and calibration steps only indirectly correct for the biasing effect of 
remaining snow patches on retrieved/downscaled snow depths. They 
also address other bias effects (see Section 5.2). Future work should 
thus include a targeted correction of the DEM data for remaining snow 
patches. This would improve our results and potentially reduce the 
need for the currently calibration step.

Enderlin et al. (2022) deemed COP30 data too imprecise for estimat-
ing snow depth. Encouragingly, our results demonstrate that the COP30 
and FAB DEMs improved after bias correction, and performed compara-
bly with DTM1 and DTM10 at mesoscale in treeless areas (Figure S.7). 
We attribute this to the bias correction step in our workflow which 



Z. Liu et al. Cold Regions Science and Technology 239 (2025) 104580 
successfully removes bias for all four tested DEMs (Supplementary ma-
terial). We are thus confident that the regression-based bias correction 
is transferable to other regions for the same (global COP30 and FAB 
DEMs) or different DEM products. As the training area and sample were 
very large and diverse in this study (entire Norway), further research on 
the bias-correction method could examine the applicability to different 
landscapes/topography or the influence of the size of the area and 
the ICESat-2 snow-off sample. We note that the remaining elevation 
error of 0.48–0.62 m (NMAD after bias correction) for DTM1 and FAB, 
respectively, may be acceptable for deep snow or a snowpack highly 
affected by wind redistribution (e.g. this study), but can exceed the 
thickness of shallow snow packs. The influence of uncertain individual 
samples is mitigated by the approach of this study, where the ICESat-
2 measurements are used as a training sample for a downscaling 
algorithm rather than on their own. The uncertainty may be reduced for 
regions with less snow depth variability, lowering de-facto the absolute 
magnitude of discrepancies between observations and model outputs. 
Further research is needed to better understand the effect of the snow 
depth sample uncertainty on the downscaled snow depth maps, in 
particular the poor representation of extremes. It should also be noted 
that in this study, terrain parameters used for downscaling are based 
on the DTM10. The spatial resolution of the COP30 and FAB DEMs is 
coarser (30 m) than our model output resolution (10 m) and they were 
used for snow depth retrieval only, not for downscaling. When applying 
our workflow to other regions the spatial resolution of the output snow 
depth maps will therefore be limited by the available DEM.

This study only validates the downscaled snow depths above the 
tree line and further work is needed to assess the performance of the 
proposed workflow in forested areas where ALS validation data is avail-
able. We expect that more, or different predictors may be needed to 
capture information on snow-canopy processes (Mazzotti et al., 2023) 
influencing the accumulation and ablation of snow. High-resolution 
lidar data allows for the removal of vegetation, but global-scale DEMs 
are usually based on photogrammetry or radar interferometry, which 
may not exclude vegetation cover. There are efforts to create global-
scale vegetation-free DEMs like the FAB DEM included in this study, 
and further developments are expected from machine-learning algo-
rithms. Currently, for the high elevation accuracy required for snow 
depth retrieval, we recommend to be cautious about using COP30 and 
FAB in forested areas, as vegetation is hardly (fully) removed.

5.2. Snow depth downscaling

Tree-structure models perform well in capturing nonlinear relation-
ships. The model used in this study provides reasonable predictions 
for snow depth. However, unless calibration is applied, our approach 
leaves a significant amount of variability unaccounted for, particularly 
for periods/areas with deep snow depths as observed in the time series 
analysis (Fig.  7) or in the snow depth maps (Figures S.8, S.9). The 
underestimation of spatial variability arises from several factors: i) the 
regression model’s inherent limitations, ii) a likely imbalance of the 
training samples, and (iii) the limitation of the predictors to capture 
physical processes driving the redistribution of snow.

Inherently (i), deterministic regression models primarily yield con-
ditional means and may not adequately represent extreme events, 
especially when key features do not fully explain variations. This often 
results in underfitting as the models strive to minimize overall predic-
tion errors. Additionally (ii), the spatial distribution of snow depth is 
inherently scale-dependent (Melvold and Skaugen, 2013; Mott et al., 
2018), meaning a sensor’s spatial resolution is critical in determining 
captured variability. Our training samples, derived from the ICESat-2 
ATL08 elevation product, correspond to an area of ca. 20 m ×15 m, 
which is better than previous study cases but still averages out for finer-
scale variability. ICESat-2’s sparse spatial sampling pattern with several 
kilometers gap between sampled snow depth profiles, combined with 
a 92-day revisit period of the satellite and possible cloud cover leads 
13 
to substantial gaps in seasonal data coverage. Data points with high 
snow depth measurements are thus likely to be relatively few. ICESat-
2’s elevation data, derived from a ground-finding algorithm that uses 
a probability distribution function (PDF) of reflected photons (Neuen-
schwander et al., 2022), can vary in quality depending on the terrain. 
In rugged terrain where snow depth is typically the deepest, noise or 
unbalanced sampling can lead to misrepresentation of extreme values.

The shortcomings of the model and data sample could be mitigated 
if model predictors were able to fully capture spatial variability of 
snow depth and its underlying physical processes (iii), which is not the 
case. ERA5 Land input snow depth values may provide incorrect prior 
information as the dataset seems to contain interpolation effects that 
are possibly a downscaling artefact from the production of ERA5 Land 
from the coarser ERA5 data (Hersbach et al., 2020). For example, snow 
depth values are much higher for ERA5 Land grid cells on or adjacent to 
large glaciers like the Jostedalsbreen ice cap in Southern Norway, and 
lower for grid cells on or adjacent to large water area. Consequently, 
although we have excluded all glaciers and lakes, neighboring ERA5 
Land grid cells still contain these biasing effects. There, the predicted 
subgrid variability is not solely a reflection of inherent snow conditions 
but is significantly influenced by this spatially-dependent bias that the 
model needs to detect and correct for based on spatial information, 
i.e coordinate features (N, E). This highlights the importance of dense, 
localized sampling of ICESat-2 snow depths, which may be challenging 
for smaller study areas and for lower latitudes, given ICESat-2’s sparse 
sampling pattern. By expanding the training area, as done in this study, 
the model benefits from more samples but might also learn a more 
generalized, averaged representation of snow depth.

Among the predictor features, elevation emerges as the most sig-
nificant, as expected from the temperature–elevation relationship, oro-
graphic and precipitation shadowing effects (Mott et al., 2018; Parr 
et al., 2020) where also aspect plays an important role. The TPI at a 90-
meter scale is a strong predictor (Fig.  9) and corresponds to the size of 
terrain features in our study area. However, these predictors represent 
general patterns only. They are not sufficient to represent the locally 
different snow depth variability. Here, the cumulative effect of multiple 
snow transport events over an entire winter season plays a crucial role. 
By refining the wind-aspect factor (Bennett et al., 2022; Dvornikov 
et al., 2015) into new cumulative values to describe wind redistri-
bution (i.e. accumulation or erosion), our model is able to explain a 
considerable amount of the observed preferential snow deposition (Fig. 
9g). Erosion is not well captured (Fig.  9f) by the downscaling model. 
There is potential to improve wind-related predictors, as the spatial–
temporal resolution of wind fields from ERA5 Land monthly data is 
likely insufficient for capturing complex wind-topography interactions. 
Downscaling of wind fields (Fiddes et al., 2022; Toumelin et al., 2023) 
could enhance the model’s ability to capture wind-driven variability. 
Additionally, the model does not account for the impact of wind on 
the energy balance at the snow-atmosphere interface, involving sensible 
and latent heat exchanges (Mott et al., 2017), a factor crucial to the 
dynamics of a snowpack. The choice of predictors in this study is 
based on our expertise and corresponds to commonly used predictors 
in statistical modeling of snow distribution. This choice inherently 
introduces bias as the predictors are not able to explain the entire 
variability. Future research could benefit from incorporating more 
features that are related to physical snow processes or the integration 
of snow melt-out information from fractional snow cover data from 
optical satellite imagery (Gascoin et al., 2019) commonly used in snow 
data assimilation schemes with process-based models (Margulis et al., 
2016; Mazzolini et al., 2024). Used as an exploratory tool, the model 
might assist in learning what processes are at play and how to best 
represent them statistically, ideally leading to a simplification of the 
workflow.

The calibration step uses quantile mapping based on the observed 
cumulative snow depth distribution function during 2009 peak snow 
conditions in the Hardangervidda area. Our selected control points 
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cover the entire study area (∼1.5 points per square kilometer), en-
suring a comprehensive correction across all regions analyzed. While 
greatly improving our results, especially for the reproduction of ex-
tremes values, the need of a scaling calibration is a disadvantage 
for an extrapolation of our method to global applications. The slight 
underestimation of snow depths for the presented western sub-region 
in the validation area (Fig.  6) suggests that the single scaling function 
obtained from the Hardangervidda area does not fit the sub-region 
perfectly, and a locally adjusted scaling might result in a better fit.

Future research is needed to determine optimal training/model 
area sizes or transferable scaling calibration functions for areas with 
different topography and climate. However, extensive, other publicly 
available snow depth reference datasets like the Hardangervidda ALS 
dataset are currently not available for Norway and are generally very 
rare. In the western United States, the Airborne Snow Observatory 
data (ASO; Painter et al., 2016) includes multi-temporal snow depth 
maps of several large catchments that could be suitable to examine 
the local dependency of our downscaling approach and further develop 
the method. Similarly, the lidar dataset collected in Northern Alaska 
by Parr et al. (2020) could be used to train for an Arctic snowpack. 
As an alternative to using extensive validation data for model result 
calibration, future research could explore the use of small representa-
tive snow depth distributions such as strategically chosen, smaller snow 
depth maps from drone-based surveys, data from snow courses, or snow 
depth measurements from meteorological stations.

5.3. Validation

Snow depth distribution in alpine environment is influenced by 
distinct processes occurring at various spatial and temporal scales. Our 
model demonstrates high fidelity of snow distribution patterns even 
at the microscale (Fig.  6c), though with lower performance metrics 
compared to the mesoscale. Our findings complement the insights 
from Mott et al. (2018), which recommend a resolution finer than 
50 meters to capture the spatial variability inherent to wind-driven 
processes. For example, Trujillo et al. (2007), Mott et al. (2011) and 
Mendoza et al. (2020a) report a distinct ’scale break’ at around 100 m, 
with a stronger spatial autocorrelation of snow depths below the scale 
break than beyond. Such spatial correlation can be attributed to the 
wavelength of wind-driven snow accumulation features (Mott et al., 
2018). The ALS data and our model output identified the presence of 
scale breaks and dependence on terrain features (95 m accounting for 
79% variance for ALS data and 108 m for 60% variance for our model, 
Fig.  10), demonstrating the effectiveness of our scheme in capturing 
a high level of spatial details and the impact of landscape patterns. 
Notably, we also found a scale break at 1300 m by fitting the empirical 
variograms at two different ranges, which corresponds to the wave-
length of ridges in this area (Fig.  10). These scale breaks underscore 
the critical resolution and minimal survey scope required to accurately 
capture spatial variability over the hillslope. Such insights are pivotal 
for designing snow surveys or evaluating snow models/products.

RMSE or 𝑅2 are standard metrics for evaluating regression model 
performance, focusing primarily on overall accuracy and fit. However, 
they may not adequately capture the variability and structural patterns 
in snow depth distribution, especially at the microscale. Figs.  6 and
7 show high signal fidelity (high Spearman rank correlation) however 
with poor 𝑅2. To enhance the evaluation of regression outcomes for 
snow depth subgrid variability, it is essential to consider the scales 
involved and incorporate additional metrics. As an alternative to the 
Spearman rank correlation used in this study, structural similarity index 
measure (SSIM, Parr et al. 2020) might be a suitable metric to capture 
relative similarities.
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5.4. Application

Current limitations of ICESat-2 data, including the month-long data 
availability lag and significant spatial and temporal gaps, restrict its 
utility (Deschamps-Berger et al., 2023). Spatio-temporal propagation of 
ICESat-2 snow depths by use of modeling is thus the logical next step to 
produce timeseries of snow depth maps and make this data useful for 
wider applications. Hereby, standard statistical models that solely de-
pend on topographic features for snow spatial distribution fall short on 
temporal variability. Our workflow resolves many of these constraints 
by incorporating temporal variability from ERA5 Land. Other emerging 
approaches to create snow depth maps from ICESat-2 data include 
combining ICESat-2 snow depths with snow cover information and a 
process-based model within a data assimilation framework (Mazzolini 
et al. 2024, using higher-resolution snow depths from ATL03 data) or a 
combination of deep learning and probabilistic data assimilation meth-
ods (Guidicelli et al. 2023, using snow depth tracks synthesized from 
snow depth maps to mimic ICESat-2 snow depths). Both approaches 
yield promising results and also use ERA5 Land data as forcing, thus in 
principle globally applicable, but focusing on smaller catchments and 
coarser spatial resolution than presented in this work. Future research 
could focus on comparing or merging these different approaches.

Notably, we find that the performance of aggregated downscaled 
snow depth is not sensitive to the absolute precision of the reference 
DEMs (Supplementary Section D), indicating that our approach is not 
limited to areas with high-resolution DEMs but can be applied using 
global DEMs in treeless conditions globally. However, careful consid-
eration is required when applying this workflow to new study areas or 
applications:

1. Global DEMs like the Copernicus GLO-30 or FABDEM are a 
patchwork of data from satellite-derived DEMs and local/na-
tional data sources and may not have equally good quality in 
different regions,

2. Care has to be taken to ensure including enough ICESat-2 sam-
ples in/around the target area. Areas further south will have 
larger coverage gaps due to ICESat-2’s sampling pattern that 
is densest at the poles. Upcoming ICESat-2 data expected for 
several more years will mitigate this

3. Applying calibration with the most representative field survey
4. Accounting for regional climatic variability that some area are 
heavily influenced by specific weather events or patterns.

The workflow described herein is applicable to a range of applica-
tions in need to assess snow distribution patterns where sparse snow 
observations exist. For example, our workflow can (1) mitigate data 
gaps in remote areas spatially and temporally, e.g. by interpolating 
and extrapolating weather station observations (Fig.  6, 7), (2) help to 
plan and reduce cost of new snow surveys (e.g coordinating surveys 
with ICESat-2 coverage), (3) improve local estimates of snow water 
equivalent in large alpine watershed, and (4) be combined with a 
classical snow modeling approach. Suppose a snow model provides 
not just average value snow depth, but also a probability density 
distribution representing the subgrid variability (Gisnås et al., 2016), 
such a curve can then be translated into a snow depth map using our 
snow downscaling scheme.

In the current implementation, we observe some limitations in 
extrapolating the method in time, or simulating timeseries for a single 
point. First, our current implementation assumes stationarity of ERA5 
Land data. For instance, Kouki et al. (2023) found discontinuities in 
the ERA5 Land snow products around 2004 due to the introduction of 
new satellite products in the assimilation scheme. Other stationarity 
issues may arise from the method used to generate ERA5 Land with 
successive spin-up periods (1949, 1981, 2001; Muñoz-Sabater et al., 
2021) or due to changed climate conditions in the future. An alternative 
to expand the temporal extrapolation and improve stationarity issues 
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would be to employ an energy-mass balance snow model like Crocus 
or Snowpack (Vionnet et al., 2012; Bartelt and Lehning, 2002) using 
ERA5 as forcing. Such snow reanalysis approaches were found to 
be better at estimating snow water equivalent (SWE) globally than 
methods based on passive microwave observations (Mortimer et al., 
2020). Our statistical approach performs well compared to the seNorge 
product, but there is currently no physically-based snow reanalysis 
available at a comparable spatial resolution in Norway. Any subsequent 
application of the proposed approach will require careful assessment 
of uncertainties and the quality of input data, including ERA5 Land 
stationarity. Second, simulating snow depth at the point scale as shown 
in Section 4.3 shows poor agreement with station measurements (Table 
2), and the application of a simple correction factor to ERA5 Land 
timeseries would likely yield better results. This is partly due to various 
local processes that may affect snow distribution not captured by the 
model (e.g. localized wind field in respect to terrain, radiation, etc.) 
or locally disturbing the weather station, but also the model capabili-
ties and design with mostly spatially constant input features. Further 
studies should consider adding predictor features that consider time 
explicitly or in a summarized way over the course of the snow season, 
such as a radiation or heat index (Cristea et al., 2017) or annual snow 
melt-out dates from fractional snow cover data.

Given careful calibration and information on snow density, the 
presented cost-efficient subgrid parameterization for snow depth could 
be used to estimate SWE or to correct precipitation/snowfall bias in 
snow models (Girotto et al., 2024), to eventually serving as input 
for discharge modeling (Helbig and van Herwijnen, 2017). Microscale 
snow depth maps could benefit studies of ecosystems in snow-covered 
regions, from habitat availability for wildlife (Liston et al., 2016) to 
plant phenology under the snowpack (Niittynen and Luoto, 2018). 
Snow depth parametrizations/distributions at the mesoscale for large 
areas or detailed snow depth maps at the microscale are crucial for 
local permafrost studies (Gisnås et al., 2016).

6. Conclusion

This study introduces a workflow for snow depth retrieval from 
ICESat-2 ATL08 and DEM data to downscale ERA5 Land snow depth 
data using XGBoost tree-structure machine learning models. The two 
datasets, ICESat-2 and ERA5 Land, have complementary resolutions in 
space and time that allow for the generation of accurate monthly snow 
depth maps at the hillslope scale. Hereby, ERA5 Land data primarily 
provides the temporal variability, and ICESat-2 the spatial variability 
in snow depths, propagated in space using terrain features and other 
relevant predictors to train the downscaling model. Advanced bias 
correction and calibration are part of the workflow to address inherent 
systematic errors present in the data and correct for residual bias.

(1) There are few snow depth observations available in remote 
areas, and to this day, no inexpensive ways to map small-scale 
variability exist. Here, ICESat-2 ATL08 data as presented in our 
workflow of co-registration and bias-correction stands out as a 
valuable data source.

(2) The downscaling-calibration scheme’s performance to predict 
peak snow for 6 × 2 ALS flight strips in the Hardangervidda 
is very good at mesoscale (100 × 500 m, 𝑅2 values ranging 
from 0.74 to 0.88). At microscale (10 m), the spatial snow depth 
pattern is captured very well but absolute values are less so. 
The model is also able to represent the spatial pattern of snow 
melt-out during late spring as visible from snow cover satellite 
data.

(3) We introduce a new cumulative wind-aspect factor in the down-
scaling model that estimates snow wind re-distribution from 
ERA5 Land monthly wind fields in a cumulative way. This factor 
has a high predictive strength for the spatial distribution of snow 
depth at micro- and mesoscale in the downscaling model.
15 
(4) The downscaling model is sensitive to systematic bias in the 
elevation data, like slope- and curvature-dependent bias, which 
is more critical in global DEMs. Our bias correction demonstrates 
significant improvements in such DEMs. Therefore, similar re-
sults can be obtained when using the global DEM Copernicus 
GLO-30 (30 m spatial resolution) compared to the Norwegian 
national DEM (DTM1) at 1 m spatial resolution.

(5) Post-calibration of downscaling model results is currently nec-
essary to compensate for the model’s under-representation of 
extreme values. This under-representation is likely caused by 
inherent model behavior (tending towards average values), re-
maining bias and the nature of the training data. Biasing fac-
tors include persistent snow patches on supposedly snow-free 
reference DEMs, simplified representation of wind processes, 
under-sampling and underestimation of high snow depths in 
ICESat-2 data, and temporal non-stationarity in ERA5 Land data. 
Future research and more adaptable calibration methods for 
varied scenarios may improve results and remove the need of 
post-calibration.

The result of this work is a scalable and explainable downscaling 
model. It provides a heuristic data-driven solution to model snow depth 
spatio-temporal variability, especially in mountainous regions. While 
the validation is specific to Hardangervidda in southern Norway the 
workflow could be applied to other non-vegetated, snowy regions of 
the world given an existing local calibration dataset.
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